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ABSTRACT

A celebrated theorem of Selberg states that for congruence subgroups of
SL2(Z) there are no exceptional eigenvalues below 3/16. Extending the
work of Sarnak and Xue for cocompact arithmetic lattices, we prove a gen-
eralization of Selberg’s theorem for infinite index “congruence” subgroups
of SL2(Z). For such subgroups with a high enough Hausdorff dimension
of the limit set we establish a spectral gap property and consequently
solve a problem of Lubotzky pertaining to expander graphs.

1. Introduction

Let A be a finitely generated subgroup of SL(Z). In dimension two being finitely
generated is equivalent to being geometrically finite, i.e., the fundamental domain
F = A\H has finitely many bounding sides [2]. The limit set of A, denoted by
L(A), is a subset of R U co; it was observed a century ago by Poincaré and Klein
that if F has infinite volume (and A is not elementary) L(A) is a Cantor-like
set, we will denote by §(L(A)) its Hausdorfl dimension. The spectrum of the
Laplacian A on L%(F) will be denoted by Q(F).

The spectrum of geometrically finite Fuchsian groups was investigated by Pat-
terson [32, 33]; Sullivan [46], and Lax and Phillips [21] generalized and extended
his results in higher dimensions. The main result for Q(A\H) is the following
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THEOREM (Patterson, Lax and Phillips): Assume that 6§ > 3 Then
(1) The bottom of the spectrum®, Ao(F) = 6(1—6); it is an isolated eigenvalue
of multiplicity one.
(2) There are finitely many discrete eigenvalues in the interval [0,1/4).
(3) If vol(F) = oo the spectrum Q(F) is continuous in [1/4, o<).

Now let A(p) = ANT(p), where I'(p) is a principal congruence subgroup of
level p:

(1.1) T(p) = {y € SLy(Z): 7 = <(1) ‘;) modp}.

As a subgroup of finite index in A(1) = A, A(p) has the same bottom of the
spectrum, Ao(A(p)\H) = Ao(A(1)\H).

We are interested in estimating A (A(p)\H) as p — oo. For congruence sub-
groups Selberg proved the following celebrated result [42].

THEOREM (Selberg, 1965): Let I'(N) be any congruence subgroup of SLy(Z),
Le., subgroup containing principal congruence subgroup T'(N). Let X' (N) =
IY(N)\H. For N > 1

(1.2) A(X'(N)) > 3/16.

In 1995 Luo, Rudnick and Sarnak [26] established a better bound? by using
properties of the Rankin-Selberg convolution L-functions on GL3:

THEOREM (Luo, Rudnick, Sarnak, 1995):
(1.3) A (X'(N)) > 171/784,

taking us about halfway beetween Selberg’s Theorem and the following remark-
able conjecture of his:

CONJECTURE (Selberg, 1965): Conditions being as above
(1.4) M) > 1/4.

The conjecture is known to be true for groups of small level [11]. It remains one
of the fundamental unsolved analytic questions in modular forms (see [38] for a

1 To put it sonorously, 4 la Mark Kac [16], one can hear the fractal shape of the
boundary in the bass note.

2 Shortly afterwards, Iwaniec [15] established a sligtly weaker bound A1 (X'(N)) >
%, using only GL; theory.
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tantalizing discussion). It has many applications to classical number theory (see
(14, 37], for example); from the point of view of modern representation theory it
is a generalisation [40] of the famous Ramanujan conjectures solved by Deligne.

Selberg’s approach was to relate this problem to arithmetic questions about
Kloosterman sums; the key ingredient in his proof is Weil’s bound® on Klooster-
man sums [49]. He remarked that “a natural question arises [as to] what happens
if we give up the assumption that I” is a congruence subgroup”, but pointed out
that the “methods which depend on estimates for Kloosterman sums are not
capable of extension to the general case” and constructed examples of surfaces
(which correspond to subgroups of SL2(Z)) with arbitrarily small first eigen-
value; examples of compact Riemann surfaces with this property were also given
by Randol [35].

In 1991 Sarnak and Xue [39] considered the case of cocompact arithmetic
subgroups of SLy(R). By the classification results of Weil a cocompact arith-
metic subgroup is commensurable with a group ® 4 derived from certain types of
quaternion algebras A over F', where F' is a totally real number field with ring
of integers 0. The group ®4 has its family of congruence subgroups, defined
similarly to the above by

(1.5) AP)={a€e®|a=1mod(P)}.

Sarnak and Xue obtained the following result (cf. also Huxley [12] where the
number 5/36 appears for related reasons)

THEOREM (Sarnak and Xue, 1991): Let I' C &4 be a subgroup of finite index.
Let T(P) = ' A(P). For large enough prime ideals P of ©

QT (P)\H) N [0,5/36) = Q(T(1)\H) N [0, 5/36).

COROLLARY (Sarnak and Xue, 1991): For I’ cocompact as above and P a prime
ideal of sufficiently large norm

A(T(P)\H) > min(A(I'(1)\H), 5/36).

The proof of Sarnak and Xue stems from the observation that if the spectrum
Q(T(P)\H) has a new eigenvalue A in [0, }), it must be of high multiplicity*. This

3 Weil’s bound in turn is a consequence of the Riemann hypothesis for curves which
he had proven earlier. Iwaniec [13] has given a proof of (1.2), which, while using
Kloosterman sums, avoids appealing to Weil’s bound. Gelbart and Jacquet [8],
using methods very different from Selberg’s, showed that 13—6 is not attained in
(1.2).

4 For the origin of this idea see [38].
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follows (as we explain in more detail in Section 6) from the result going back to
Frobenius, that the smallest dimension of a nontrivial irreducible representation
of SLy(F,) is 252, which is large compared to the size of the group (which is of
order p?). The proof then proceeds by estimating the number of lattice points
and using the (pre)trace formula to show that for small eigenvalues one cannot
accommodate such a high multiplicity.

Proceeding along the lines of Sarnak and Xue we prove the following result for
infinite index subgroups of SL2(Z), providing in passing a new proof of Selberg’s
theorem® with somewhat weaker bound.

MAIN THEOREM: Let A = (Ay,...,Ax) be a finitely generated subgroup of
SL3(Z) with 6 > 2. Let F(p) = A(p)\H. For p large enough

Q(F(p)) N [6(1 - 5),5/36) = QF(1)) N [5(1 — 8),5/36).

MAIN COROLLARY: Suppose that § > 2. Then Q(F(p)) has a spectral gap, that
is for p large
M(F(p)) > min(Ay(F(1)), 5/36).

ORGANISATION OF THE PAPER AND STRATEGY OF THE PROOF. The observa-
tion that the multiplicity of new eigenvalues is large,

m(A, F(p)) > (p—1)/2,

carries through to our context, once we prove that for p large enough A(1)/A(p) =
SLy(F,); we attend to this matter at once in section 2. The proof of the theorem
hinges on bounding the multiplicity from above, more precisely, obtaining the
bound

m(A, F(p)) < p*179),

where A = s(1 — 1). In order to extend the approach of Sarnak and Xue in
obtaining this bound, the main obstacle we have to overcome is the infinitude of
the volume of F(p). After the review of the pertinent geometric facts, we begin
the attack by decomposing the fundamental domain into compact and infinite
parts in section 3. Following that, in section 4, we prove the key collar lemmas,
(Lemmas 4.1 and 4.2) which state, rougly speaking, that for low-lying eigenvalues
(below 1) the L? norm of the eigenfunction of the Laplacian in a collar of fixed
width, contiguous with a cusp or a flare, is of the same order of magnitude as

5 It follows from the main theorem and the well known fact (see, e.g., [37], p. 34)
that A1(SL2(Z)\H) > 1.
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its L2 norm in the whole cusp or flare. In a sense, this lemma could be viewed
as a generalization of the following fact about the zero eigenvalue and constant
eigenfuction (area) in the cusp: the hyperbolic area of the collar of width In2 is
the same as the area of contiguous cusp.

Arithmetic of the problem comes into play in the following estimate® on the
number of lattice points (the implied constant is independent of p):

T2-+—5 T1+e
N(T,TENE S 1« —- L

YEL(p)
vl

This estimate is proved in section 5, where we also set up the trace formalism
by proving the pretrace inequality (Proposition 5.2), and computing the Selberg
transform and convolution of a point-pair invariant given by characteristic func-
tion (Proposition 5.1). In section 6 we put everything together and prove the
main theorem.

Then in section 7 we exploit the consequences of the main theorem to address
the question of Alex Lubotzky, pertaining to expander graphs.

Expander graphs are widely used in Computer Science, in areas ranging
from parallel computation to complexity theory and cryptography. Identifying
synapses with the vertices and dendrites with the edges, we can view the network
of 10'2 neurons in the brain as an expander graph. Intuitively, to be an expander
graph, a graph has to be sparse and highly connected. Clearly, high connectivity
is desirable in any communication network. The necessity of sparsity is, perhaps,
best seen in the case of the brain-graph: since the “wires” have finite thickness,
their total length cannot exceed the quotient of the average volume of one head
and the area of the wires’ cross-section. Also note that the thinner the wire, the
longer the time of propagation.

There are several ways of making the intuitive notions of connectivity and
sparsity precise; the simplest and most widely used is the following.

Definition 1.1: Given an undirected k-regular graph G and a subset X of V, the
expansion of X, ¢(X), is defined to be the ratio |[N(X)|/|X|, where N(X) is a
set of neighbors of X. The expansion coefficient of a graph G

(1.7) o(G) = inf{c(X) 1X] < %|g|}.

6 It is only here that we use the fact that the homomorphism A — SL2(F,) is
the reduction modulo p and not an arbitrary one; in fact most of the proof
goes through with the much weaker assumption A(1)/A(p) = SL2(F,). We are
indebted to a referee for this remark.
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The expansion coefficient is a discrete analogue of Cheeger’s constant for Rie-
mannian manifold. The discrete analogue of the Laplace operator is the nearest
neighbor averaging operator; there is a discrete analogue of Cheeger—Buser in-
equalities relating ¢(G) to A1(G) (see [24] for a very clear exposition of this and
other topics pertaining to expander graphs).

Definition 1.2: A family of k-regular graphs G, forms a family of expanders if
there is a fixed positive constant C, such that

(1.8) liminf ¢(Gn) > C.
By the discrete Cheeger-Buser inequality G,, is a family of expanders iff

(1.9 lim inf A,(G,,) > 0.

n—o0
It is not difficult to see that a random regular graph is a good expander. How-
ever the explicit construction of expander graphs is much more difficult and was
first achieved by Margulis {29], who used Kazhdan property (T) from represen-
tation theory of semi-simple Lie groups [17]. Lubotzky, Phillips and Sarnak [22]
constucted expanders based on Selberg’s theorem, and later the optimal ones
based on the (proven) Ramanujan conjectures. As Lubotzky wrote in [25]:

What is very frustrating is that all these deep theories give some
examples with very special sets of generators. A small change of the
construction — which seems to be meaningless from the combinatorial
point of view — leaves these tools helpless.

Lubotzky illustrated this by the following example. For a prime p > 5 let us

T ey
s {0 1)
e-{( (1)

and for i = 1,2,3 let G& = G (SLy(F;),S;), a Cayley graph” of SLy(F,) with
respect to S;,; these graphs are connected as we will show in the next section.

7 A Cayley graph of a group G with respect to a symmetric set of generators S,
which we denote by G(G,S), is a graph whose vertices are elements of G and
a € G is adjacent to ga, 0 € S.



Vol. 127, 2002 INFINITE INDEX “CONGRUENCE” SUBGROUPS 163

The graphs g;‘, can be viewed as a “discrete approximation” of the hyper-
bolic manifolds X? = A*(p)\H, where A’ is subgroup of SLy(Z) generated by
((6 3),{(; ?))- By Selberg’s theorem the families X} and X2 have a spectral
gap (form a family of “expander surfaces”) and from this one deduces (as we do
in section 7) that g; and gﬁ are families of expander graphs. Given this fact, it
is difficult to believe that gg is not an expander family. Note, however, that the
group generated by ((J 2),((; 7)) has infinite index and thus does not come
under the purview of Selberg’s theorem. These considerations led Lubotzky to
pose the following question®: can a finite set of elements in SLy(Z) give rise to a
family of expanders even if the subgroup they generate has infinite index?

Recently Shalom [43] proved that such expanders exist and gave an explicit
example of an infinite-index subgroup in PSLa(Z[w]) (where w is a primitive third
root of unity) yielding a family of expanders; his approach (based on the use of in-
variant means on the profinite completion of the finite groups) is non-constructive
and does not yield explicit examples in SLo(Z). Restating the corollary of the
main theorem in representation-theoretic language and using Fell’s continuity of
induction we prove the following theorem, complementing results of Shalom in
addressing Lubotzky’s problem.

THEOREM: Let S = {A,,..., Ak} be a symmetric set of generators in SLs(Z) and
let A = (Aq,..., Ax). If the Hausdorff dimension of the limit set 8(L(A)) > 5/6
then G, = G(SLy(F}), S) is a family of expanders.

After proving this theorem in section 7 we conclude by giving the examples of
generators satisfying its conditions.

For the subgroups with Hausdorff dimension of the limit set less than % (in
particlular for the group generated by ((} %), ((3 7)), whose Hausdorff dimension
was found to be 0.753 £ 0.003 by Phillips and Sarnak {34]) the question remains
open® and demands for its solution a fundamentally new idea. Several remaining
problems are more tractable: extending the main theorem to SLs(C) (where in
the cocompact arithmetic case Sarnak and Xue [39] have a result analogous to
the one in SL(R)) and finding conditions (perhaps resembling those in [7]) under
which a subgroup has a high enough Hausdorff dimension of the limit set.

8 The general problem, raised by Lubotzky in [24, 25, 23], is whether being an
expander family is the property of groups alone, independent of the choice of
generators. Very little is known about this intriguing fundamental problem; see
[44] for a discussion.

9 In fact, numerical experiments of Lafferty and Rockmore [18, 19, 20] indicate that
a “generic” element in the group ring of SL2(Z) has a spectral gap (cf. [7]).
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2. A little algebra

In this section we prove that for p large enough A(1)/A(p) = SLo(F,). Along the
way we show that the graphs G(SLa(Fy), (A1, ..., Ag)), described at the end of
introduction, are connected and establish a lower bound for their girth.

We can assume that A(1) is torsion free, if necessary passing to a subgroup
of finite index and using Selberg’s Lemma [41, 1], which states that a finitely
generated group of matrices over a field of characterisitc zero has a torsion free
subgroup of finite index.

Now consider A(2) = A(1) NT'(2). The group I'(2) is a free group, as its
subgroup A(2) is free as well. Moreover, since Hausdorff dimension of the limit
set of A(1), and, consequently of A(2), is greater than I, A(1) is nonelementary
and hence nonabelian. Now by Stallings’s Theorem [45], which states that a
finitely generated torsion-free subgroup which contains a free subgroup of finite
index is free, we conclude that A(1) is free as well.

Consider now the Cayley graphs

Gp = G(A(1)/A(p),S), S={A1,..., A}

We estimate their girth ¢(G,) (the length of the shorterst cycle) from below
following the method used by Margulis [30]. To this end we estimate the quantity
d(Gp), defined as the largest integer such that any two walks in G, of length less
than d(G,) starting at £ = ((1) (1)) end at different vertices. (By a walk of
length k¥ we mean a sequence of steps along adjacent vertices zg,...,z, such

that z;_1 # x;41.) By the homogeneity of G, we have
o(Gp) > 24(G,) ~ 1.

Let ¢p, be a homomorphism of SLy(Z) onto SLa(F,) which associates with each
matrix X € SLy(Z) the matrix ¢,(X), obtained by reducing each element of X
modulo p. We have

A(1)/A(p) = ¢p(A(1)) = Yy,
where Y}, is some subgroup of SLy(F).
Let us set

Arp = dp(A1),. . Agp = ¢p(Ak);  Sp = ¢p(5).
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So we have G, = G(Y;,Sp). Assume we are given two walks in G,, p =
(po,P1,---,pr) and s = (8g, 51, . .., 8t), both starting at E = py = s¢ and having a
common end p, = s;. By the definition of the graph G,, we find that p; = p;_1v;
and s; = sj_qwy, 1 <4 <1 < j <t, where v;,w; € Sp. The walks p and s
correspond to the words V = {vy,...,v,;) and W = (wq, ..., w;) over S,. Clearly
pi =v1...v; and 85 = wy ... Wj.

Hence, since p, = s;, we have

(2.1) Vy...Up = Wy ... W
Let us define the word V = (v1,...,%,) by

. A v = Ay
VEVAT ifui= A

and W = (uy,...,;) analogously.

By our definition of a walk, the words V and W and hence the words V and
W are reduced. Since the walks p and s are different and po = sp = E, the words
V and W and thus the words V and W are different. As V and W are different

reduced words over Ay, ..., Ax, we infer that
(2.2) V1...Up F 0 ... W
since there are no multiplicative relations between A;,...,Ar. On the other

hand, by (2.1) we have

(2.3) bp(V1 .. .U) = Gp(1hy . . . 1y).

Therefore all the elements of the matrix v; ...9, — w; ... w; are divisible by p
and at least one of them is different from zero by (2.2).
We conclude that

(2.4) [[01...0, — ... 5] > p,

where the norm of a matrix L is defined by

L
L) = sup 122l
z#£0 ”"I"”

and the norm of = (z1,z2) is given by {[z| = \/z? + z2. From (2.4) we infer

(2.5) max |6, . ... 0, ||, iy . . . G| > g.
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Let o = maxy || Ag|]. By submultiplicativity of the norm of matrices, from (2.5)
we deduce

(2.6) qrax(rit) > P
2
Keeping in mind the definition of d(G,), by (2.6) we obtain the inequaliy

(27) d(Gy) > log, (%),

and consequently

p
. > ~] -1
(2.8) c(Gy) 2 210g, (5) -1
Let us recall now the classification of subgroups of SLy(F,) from [47].

THEOREM 1: Let p be a prime with p > 5. Then any subgroup of SLy(F,) is
isomorphic to one of the following subgroups:
(1) The dihedral groups of order 2(’%) and their subgroups.
(2) A group H of order p(?;—l) and its subgroups. If Hy = N; is a subgroup of
H, then its factor group H/H; is cyclic.
(3) A4, S4, or As.

Following Davidoff and Sarnak [5] we now prove that Y, & SLy(F)) for p large
enough. Suppose not. Then Y, is a certain proper subgroup listed in Theorem
1. Certain proper subgroups can be eliminated immediately as possibilities for
Y, since they contain elements of small order which clearly violate the girth
bound (2.8). However, we see that the remaining subgroups have trivial second
commutator, that is to say for all x1,z2,¥1,y2 € ¥, we have

(1127 ) (B2yazy 'ya ) iz 'oT ) (vazays 'os t) = 1.

If we take z1,¥1,T2,¥2 to be any generators in the construction of our graphs,
then we see that this condition provides a closed cycle of length 16. However,
such a cycle also violates the girth bound whenever

(2.9) 2log, (’2—’) > 17.

17/2

So for p > 2« we get a contradiction.
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3. Anatomy of the fundamental domain

We will use alternately the upper half-plane and unit disc models; in this sub-
section we will summarize the pertinent formulae. The Poincaré upper half-plane
model is the following subset of the complex plane C:

H={z=z+iyeC|y>0},
with the hyperbolic metric
1
(3.1) ds? = F(daﬂ + dy?).

The distance function on H is explicitly given by

|z — @] + |z — w|

2 =1 .
(32) plesw) = log o T

It will often be more convenient to use the following expression:

(3.3) cosh p(z, w) = 1 + 2u(z, w),
where
2z — w|?
4 = .
(34) Unv) = S5

The mapping

z—1
2+
maps H biholomorphically onto the unit disc D,

Z— z€eH

D={w=z+iyeClz®+y*<1}.
The induced metric is

4(dz® + dy?)

(35) d82 = (T:m-

The ring M2(R) of two by two real matrices is a vector space with inner product
given by
(g, h) = trace(gh®).

One easily checks that ||g]| = (g,¢)? is norm in My(R) and that

(3.6) P =a®+82+2+d® forg=(% °).
c d
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By taking 2 = w = i in (3.4) we obtain that
(3.8) ligll? = a? + b + ¢ + d® = 4u(gi, i) + 2.

The Riemannian measure on H is expressed in terms of Lebesgue measure by
the formula

dzd
(3.8) dp(2) = y—zy
and on D by the formula
2 2
(3.9) du(z) = (I_—I—Z—li) dzdy.

The area of a hyperbolic disc of radius r is

(3.10) area(r) = 4 sinh? (g) .

B

Figure 1. Hyperbolic triangle.

Let T be a hyperbolic triangle (see Figure 1) with vertices labelled A, B, C;
the sides opposite these vertices labelled a, b, and c respectively, and the interior
angles at the vertices a, §, and 7.

The following hyperbolic sine and cosine laws hold:

sinha sinhb  sinhc

(3.11) sina  sinf  siny’
(3.12) cosh ¢ = cosha cosh b — sinh a sinh bcos .
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We will need the notion of Fermi coordinates {3]. They are defined as follows.
Let n be the geodesic in the hyperbolic plane parametrized with the unit speed
in the form

tont)eH, teR.

Then 7 separates H into two half-planes: a left hand side and a right hand side
of n. For each p € H we have the directed distance p from p to 5. There exists a
unique ¢t such that the perpendicular from p to 5 meets n at n(¢). Now (p,t) is a
pair of Fermi coordinates of p with respect to 5. In these coordinates the metric
tensor is

(3.13) ds® = dp? + cosh? pdt?.

DECOMPOSITION OF THE FUNDAMENTAL DOMAIN OF F(p). We begin by de-
composing the fundamental domain of a given geometrically finite group A(1).
As is well known (and discussed, for example, in [32]) we have a decomposition
of the fundamental domain F(1) = A(1)\D of the following form:

F(1)=K)u U cusp, U U flare;

i€Cu(1) JEFI(1)

where
(1) K(1) is relatively compact in D

(2) Cu(l) is a set of cusps of F(1). Each cusp, is isometric to a standard
cuspidal fundamental domain P(Y;) of the form

PYy={z=z+iy|0<z<1l,y>Y},

based on a horocycle

hy ={z+iy|y=Y}

(3) FI(1) is a set of flares of F'(1). Each flare;(c) is isometric to a standard
hyperbolic fundamental domain F(a) of the form

F(a) ={z:1 < |z| < exp(k);0 < arg(z) < o},

where a < 7/2.
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Figure 2. A cusp and its collar.

Now we subdivide each cusp; and flare; into a collar of width In2 and a
contiguous cusp; and flare; respectively:

cusp; = collar; LiIcusp; and flare; = collar; Liflare;.

In more detail the definitions are as follows. For a cusp (see Figure 2), a collar
of width a is a set of points in P(Y") whose distance from hy does not exceed a:

collar,(Y) = {2 € P(Y) | p(z, hy) < a}.
Fixing a = In 2 we have
collar(Y)={z+iy |0 <z <1,Y <y <2Y}.

In other words, collar(Y') is a set of points between the horocycles hy and hgy.
Given a hyperbolic fundamental domain F(a) (see Figure 3) let 1 be the
geodesic 7 — n(1) = ie”.
Introducing Fermi coordinates based on 7 we obtain the description of a flare
as a surface [pp,00) x [0, ) with Riemannian metric

(3.14) ds? = dp® + cosh? pdt>.
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Figure 3. Hyperbolic fundamental domain.

Here p is the distance to the geodesic 7, po = p(@) = 1/sina (see Figure 4 and
formulas below). Using elementary hyperbolic geometry we easily obtain

coshp =1/sin¢g, sinhp=rcot¢, tanhp = cosg.

By a collar of width a in a flare (see Figure 5) we mean a set of points in F{a),
whose distance from 1 does not exceed p{a) + a:

collarg(a) = {z € F(a) | p(@) < p(2) < p(a) +a};

fixing again a = In2 we have

collar(a) = {2 € F(a) | p(a) < p(2) < p(a) + In2}.
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Yy :

Figure 4. Polar coordinates in a flare.

Figure 5. Flare and its collar.

So we have a decomposition

F1)=K((1)U U collar; LIcusp; U U collar; Uflare;.

i€Cu(1) JEFI(1)

We define the compact part of F(1) as follows:

K1) =K1)u |J collau |J collar;.
i€Cu(1) FEFI(1)

Isr. J. Math.
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Now consider A(p) and F(p) = A(p)\H. As we have shown in section 2, for p
large enough the deck group of covering m,: F(p) — F(1) is SLy(F,). We define

Kp= U K@

YEA(L)/A(p)

We proceed to examine the structure of the lifted cusps and flares.

As a surface, cusp is isometric to
]—00,Y] x S* =]~ 00, Y] x R/[t = t + 1]
with the Riemanninan metric
ds® = dp? + e dt?.

The horocycles hy and hoy bounding the collar map to closed curves Cy and
Csy of lengths 1/Y and 1/2Y respectively. Now consider the lifting of a loop
Cy. Since the covering mp: X (p) — X (1) is regular, the points in X (p) with the
same projection in X (1) are inditinguishable from each other and each lift of the
loop Cy is conjugate to any other. Consequently

CY) UCY 3

where Cy is a loop of length n/Y, and mn = |SLy(F,)|. We repeat the same
argument for Cay and observe that while we have no control over the values of
Y}, the width of a collar, defined along the geodesic 7, is preserved.

Making the same argument for a flare and repeating it for each flare and each
cusp we obtain the following:

m;

7, ! [CUSp; U collar;] = U[cusp;;, Ll collar}’ ],
=1
n;j

m, }[flare; U collar;] = U [flare’?, U collar}? ],
k=1
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m copies

Figure 6. Lifting a cusp and its collar.

where cusp:fp and collar:jp are contiguous cusp and collar of width In2, and

ﬂarej-fp and collar;fp are contiguous flare and collar of width In2, respectively.

Moreover, for each 7 and each j we have

Timi; = njs; = !SLz(Fp)I-

Now collecting the lifting of the collars and lifting of X(1) we obtain the compact
part of F(p):

8.15) K@) =mn'Ka)=K@u |J Yeollarf,u |J | collary, .
i€Cu(1) I=1 JEFI(1) k=1

The collar lemma, to be proved in section 4, will be applied to each of the
contiguous liftings of collars and cusps

(3.16) collar;’, Licusp}?,
and collars and flares

(3.17) collar;’ Liflare;7,.
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4. Collar lemma for cusp and flare

COLLAR LEMMA FOR CUSP. Given T, a geometrically-finite subgroup!® of
SLs(Z), let f € Ay(I"'\H) be an automorphic form with respect to I' for the
eigenvalue A = s(1 — s):

(A+N)f=0,
f(r2) = §(z) Vyer.

Assume, moreover, that
fe L(T\H) = {f ¢ AC\H) | ||f]| < o0}

where

(.0 /F F(2)a(Ddu

and normalized to have norm 1, ||f]| = 1.

We want to examine the behavior of f in cusps and flares of I'. We begin with
a cusp.

Let P(Y) be a cuspidal fundamental domain, the semistrip

PY)={z=z+iy|0<z<qy>Y}

with a collar
CYy={z+iy|l0<z<qY<y<2Y}

LEMMA 4.1 (Collar Lemma for Cusp): In the notation as above for any Y €
(0,00) and s € (so,1), where so > 1, there is a constant c,, (independent of Y)
such that we have oy

o Ptz

Jov o \F(2)1Pdp(z) = 7
Proof: We can assume that ¢ = 1: our domain can be conjugated to such a one
with ¥ getting mapped to Y/q. As discussed for example in [14], we have the
following expansion:

> 0.

F(2) = f0)y' ™ + ) f(r)Wa(n2)
n#0

where
W(z) = 2y1/2K3_1/2(27ry)e(x).

10 We are interested in A(p), but the results to be proved in this section hold for
cusps and flares of any geometrically finite subgroup of SL2(R).
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We get by Parseval

FO 1 + 3 1f M)W, (iny)? / \Flo+ iy) .
n#0

Hence
ay ” [ ir@Pauc =iy [ "y
+ Y 1f(n) I2/ W2 (iny)y~*dy.
n#0

Let v=s— % For the zeroeth term we get

Y _
(4.2) Y Yy Yo - (1)

fyy2dy  (2Y)7?

The lemma would thus follow from the following claim:

=22 _1>0.

CrAaM 4.1: For any Y € (0,00), v € (vp,1/2) we have

fy (=)
(4.3) JY = ™
Joy 2 da

Remark: 1. The K-Bessel function K, is real for v real.

> ¢y, > 0.

2. When we apply this claim to the n-th term of equation (4.1) the n-
dependence scales away, so this suffices.

Proof: We recall the following facts regarding the Bessel function K, (z) [48].
One way of defining it is via the series

def T _
(4.4) K, (z)= St (ro) (I-.(z) — L(z)),
where
0o 2k
_e 1 v+2k ( )

(45) _gk'F(k—k—l—&—u)( ) ( ) Zk;'I‘IH—H—y)

The following asymptotic estimates hold:

T(v) rxy\—v

(4.6) K(o) ~ =52 (5) as z — 0.

For0<z <1

(4.7) K,(z) =

v—1
2 zF(V)-*-O(:Ez_U),
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where the implied constant is uniform for v € (v, %) and z € (0, %).

3
Forz > 1412

(48) K@) = (&) e (1+0(1E2)),

where the implied constant is uniform for v € (v, %) and z > 2.

More precisely, with p = 41/

R )

Occasionally it would be more convenient to work with the integral represen-
tation of K, (z):

(4.9) K, (z) =/ e~ Oht cosh(vt)dt.
0

From the integral representation the following two properties easily follow:

(1) For fixed v throughout the z interval (0, c0) the function K, () is positive

and decreasing.

(2) If > 0 is fixed, then throughout the v interval (0, c0) the function K, (z)

is increasing.

We divide the analysis of (4.3) into three parts depending on the value of Y.
We begin with large values of Y, Y > A, where the constant A is fixed below.
Equation (4.8) and the comment following it imply that there is a constant Cy
such that

T3 e~ ?
41 K(z)- ()| <
o o ()] <0
uniformly for all z > 2 and v € (v, 3). Let
(4.11) A = max(4C3,2) + 1.

For Y > A we have

2Y 2 2Y -2z
/ de__ﬁ/ e

Y x 2y .’172

2Y e~ 2T
< C% 4z,
v T

from which we obtain

2Y 2 2Y -2z 2Y -2z
K"—(ﬁv)dx>g/ ¢ dm—C’%/ ¢ _dr
Y

Y z —2J)y x? x4
T 1 2Y s . 1 2Y s
EE(TY:)—z/Y € md$—02WL [ mdil?
T e—ZY 26—2)’

> - —~ O~
= 216Y2 Ca 2Y4
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Similarly we have

o] 2 o —2x
/ K@), T / e
2y T 2 Jyy z*

from which we obtain
00 K2 e vl e—‘z::: oo -2z
/ Ko@) 4y < / dz+0§/ ¢ _dr
2y < 2 Joy a2 sy ot
et 1Y

>
= 2 8Y2 CZ 8Yy4’

[e e} e—Za:
< C22/ Az,
2y

I3

Hence for Y > A we have

2Y Kzz(z) we 3Y 2e”2Y 16C7
Jy ~47dz | S —Ci%s > e21/1 — Y%,

oo K2(z) = me-1Y 2e-4Y = 202

ay —52dr - 3 %yr + 0%y 1+ %

the last expression, since Y > A > 4Cj, is no less than

16C2
4C; 1- m16C; 2 102 5 0.
“TIrz °3°

16n

Next we consider the case of small Y, 0 < Y < a/2, where the the value of a
is fixed below. Equation (4.7) and the comment following it imply that there is
a constant C1 such that

(4.12) Ko (z) - w'<01x -v

uniformly for all z € (0,3) and v € (v, 3). Let b, = 271T'(v). The function

w02

is positive and continuous on [vy, %], hence its minimum on this interval is posi-

tive. We now fix the value of a:
min 11 h(v)

(4.19) a= ——————”G[”,_Z]

Equation (4.12) yields

2Y -2 2y 2Y
/ ﬁ(—x—)d'x - b,z,/ 2zl < Cf/ > dr,
Y T Y Y '
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therefore we have

Y g2 2

() by <2 1 2y 4-2
Yo 2dr > XY Y1 - —) - 5CY .
y z FZa, ( o) ~ 00

Similarly we obtain

a 2 a
/ K@) dz — b2 / = Yy
2y T 2Y

and therefore we have

/a KE((L‘) i < EY_ZV N C%a4—2u
sy X - Qv 2% 3

a
< 012/ 23y,
2y

On the other hand, for ¥ € (1, 3) we have, using property (2) (following (4.9)),

0o -2 oo K? (z)
o T T

a

Hence we obtain

féy K2(z) da |3 Sk (22,, ~1)— 5olzy4_2u

T 2022V
oo K2(z) = 2y -—2v C2p4~2v
2Y P dz §u22" . 3 +Ca

Now since 2Y is less than a the latter expression is no less than

b2(2% — 1) — 10022 Ca*
b + Ciat + Cya?

>0,

which is positive due to our choice of a in (4.14).

Finally we consider the case of Y € [§,A]. Let R(v,Y) be the following
function: 2 Kie)
pullall 2. S
R(v,Y) = f%ﬁ%)_da_c
2y —% 4T
It is a positive, continuous function of v and Y, therefore the minimum it achieves
on a compact set v € [vg, 3], Y € [%, 4] is positive. This observation completes

the proof of Claim 4.1. |

COLLAR LEMMA FOR FLARE. As detailed in Section 3, flare can be viewed as
a surface [pg, 00) x [0, x) with Riemannian metric

ds® = dp® + cosh® pdt?;
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the Riemannian measure is easily seen to be
(4.15) dp = cosh pdp dt.
Since the Laplacian in coordinates
ds? = ed€? 4+ 2fdédn + gdn*

is given by the formula (cf. (64) on p. 225 of [4])

Ay = 1 (2(gu§~fun)+£(eun—fu§))
Veg = fPNOEN Jeg — 2/ O\ \Jeg— 2/ )’

we obtain the following expression for the Laplacian in our coordinates:

0’F 1 0%F sinhpOF

41 AF = oF
(4.16) op? + cosh® p Ot? + cosh p dp

Let F again be an L? automorphic form with eigenvalue A = s(1 — s). In this
subsection we will prove the following

LEMMA 4.2 (Collar Lemma for Flare): For any pp € (0,00), 3 < s < s <1
there is a constant c,, (independent of py) such that we have

In K
o [ IF(2) 2

f::+ln2 fo |F(2)12du

In the flare we have

> ¢y = cgy > 0.

(A+XNF =0, F(e"z)= F(2).
Separating variables we obtain
F(z) = f(p)g(t), g(t+r)=g(t).
Expanding ¢ in a Fourier series yields
F(2) = Y Fal0)e e,

Let i = 2win/k. Using (4.16) we obtain the following ordinary differential equa-
tion for f,(p):

" sinhp _, 1 2mwin\ 2 B
@I )+ ) + (509 + () ) p =0
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Introducing the substitution
(4.18) y=tanhp =cos¢

we obtain the equivalent ODE:

o d2fn df, + (3(1 )

(1—?J)dy2 _y?i; 142

+ (#)2) fo = 0.
Let us make another substitution

(4.19) fo=(1-y>iv, = \/sinpuv,.
The differential equation for v, takes the form

d2vn dv,, 1 1 1
1- —y S (<5 (P - (- N )on =0
Now we recognize it as a Legendre differential equation

2

d“v dv 2 PR T
InZ 2mdx+(v(u+1)—u(1—x) yo=0

with the following values of v and p:

(4.20) (1- 2%

1
(4.21) p=5-s
1 2mi
(4.22) Vp = —= +
2 K

The variable z in our case is real and lies in (0,1). This equation has two
linearly independent solutions, called associated Legendre functions of the first
and second kind and denoted by P¥#(z) and Q¥(z) [36]. The behavior of these
functions at the singular point 1, expressed in terms of the leading term of their
asymptotic expansions, is as follows:

4121 — g)=n/?
Fl-p)
Q4. (z) ~ 2#°T () cos(mp)(1 — )™/ if R(p) > 0,

wip) o COTEHBHD)
Qh(x) ~ 21“‘;2“,/ S iR <o

Pl (z) ~

Since in our case u = & —s < 0, F(2) lying in L? forces us to choose the decaying
solution P¥(x).

Thus finally we obtain for f,

fa(y) = (1= y») T PL(y) = V/sin 6P (cos §),
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where p and v are as in (4.21) and (4.22). Returning to the variable p we have

falp) =

1
\/c_omP,f'(tanh p)

By the Parseval identity we get

00 K 5 _ 2 o) %_3 2
[ [ s =Sieat [P somnoas

The collar lemma for flare would thus follow from the following
LEMMA 4.3: For any pg € (0,00), % < 8p < 8 < 1 we have (with ¢, = 1 —
()

potn3(pELe (tanhp))%dp
(4.23) > s 25y > 0.

fp0+ln2(P2 - (tanh p))2dp

The proof of Lemma 4.3 in turn hinges on the following claim:

CrLAIM 4.2: For any p> 0

am(n)
(cosh p)28~1 Z (cosh p)2m’

(4.24) (P_%;jﬁ(tanh p)? =

where ap,(n) > 0.

Proof: For R(p+v) < 0, R(v — p) > -1 and 0 < £ < 1 (the case we are
in) we have the following remarkable expression for the product of two Legendre
functions, involving our old friends I, and K, ([28], p. 191; [10], p. 667):

2 o (= 580 = 34) Ko ()t

(Py()* = T(v+1- pl(-v—p)

In our case with p= 1 — s, v = —1 + 7, and z = tanh p this yields
(4.25) (P2 L, (tanhp))? =

2(T'(s + A)[(s — 7)) 7" /0°° (IS—%( t

2coshp

))2K2,-,(t)dt.

Now for I,,(z) we have

% 2 /4\k
( ) Zk‘l"(u—iélk)ﬁ-l)'
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Computing the coefficient of (£)?*2™ in the product of two convergent series
(cf. [31])

o z u+2k 0 (g)u+2j

2w D

Ford u+k+1) JIC(v+j+1)

we obtain the following expression for I2(z):

o0 ™I +2m + 1)
(4.26) IX(e) = ( ) Z 2mmT (2 + m+ )T (v + m+1))2

On the other hand, using the integral representation for K, (z) when R(v) >

1

7['5(?-)'/ 00 X

K, (z)= —2%— (2 1)V 2 dt
() F(u+§)/1 e )

and the Beta function integral, we obtain for @ > —1, R(a+1+tv) >0

(4.27) /w taK,(t)dtz2a—1r(1+‘;+")1‘(1+‘;‘_").
0

We now expand (Is_%(ﬁ%—p)){ using (4.26), and substitute it in (4.25) to

obtain
/ooo (Is'% (%(;—hﬁ) ) 2K2ﬁ(t)dt =

/°° 1 (i) 2s-1 f: t2™T(2s + 2m) Kan(t)
o (coshp)zs—1l4 £~ (cosh p)2mm!42mT (25 + m)(C(s + m + 3))?

_ 1 bm ()
~ (cosh p)2s-1 n;) (cosh p)2m’

where
['(2s + 2m) [;° t2m+2s+1 Ko (¢)dt

42m+2s—1mI1(2s + m)(T (s+m+%))2.

bm(n) =

Using (4.27) we have

/ t2m+2s+1K2ﬁ(t)dt — 22m+28—2r(m + s+ ﬁ)F(m +s— ,ﬁ)
0
So finally we obtain

am(n)
(cosh p)zs 1 E  (cosh p)>™’

(4.28) (P © 5 (tanh p))? =
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where
F(2s+2m)I'(m+ s+ a)L(m+ s —n)

(429)  awm(n) = 22m+25=1mIl(s + A)T(s — A)L(25 + m)(T(s + m + 1))?°

This proves!! Claim 4.2.
Returning now to the proof of Lemma 4.3 we have, using (4.28),

2
po+ln2 s +ln2 o m
f (P2 (tanh p)) dp J‘PO " (COShP)zs—l Z:::O (c(()lsh[:;2m
am(n)

fp0+ln2(P2 . (tanhp))zdp fpo+ln2 (coshp)'*’s 1 Zm =0 {cosh p)?m

+In2 d
Em Oam(n)fpo ! m{%é_l
Zm Oa‘m(n) fp0+1n2@)m£m

Ty am(n)bm(p0,5)
e (90, 3)

Em =0 am(n

with

po+In 2 dp e dp
b = ————— and = —_—_
m(po, ) /p (cosh p)2m+2—1 and cm/(po, 5) /pw1n2 (cosh p)2m+2s—1

0

Now coshp > e” and for p > po > 0 we have

1
coshp < 5(1 +e70)eP < ef.

Hence we have
1— 2-(2m+2s-—1)

o ) (2m+2-1)
b , > —p(2m+2s-1 do = —po(2m+42s—1 ,
m{po s)—/po ¢ P mr2s—1 ©

and similarly for ¢,,{pg, 8) we obtain

em(p s)</oo dp — L e—Po(2m+2s—1)
mAe = Po+ln2( eP)2m+2s—1  2m+ 25— 1 :

Therefore we have

2m+2s—1 2s-1 2s0—1
bm(po8) o _ (1) 21_<1) 21_(1) >0
cm(po,8) 2 2 2

11 One can give a shorter proof using the following expansion, valid for 0 < z < 1:

_1 1 1 1 1 1
(1 - p)P¥(z) =2"(1 — 2°) " 2*F (—2— + ¥ gk ¥ 5“;1 -l —zz) .

We felt, however, that the longer road was sufficiently more scenic to justify
taking it.
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Consequently we obtain

2

po+in2 (P%—s (tanh ) -

Zil.h p)} dp 1\ 2%

Po 12+n - 21% <_) >0’
R 5—8

fPo+ln2( _2%+ﬁ(tanhp)) dp

2
concluding the proof. |

5. Further analytic preparations

COMPUTATION OF CONVOLUTION. A continuous compactly supported function
k(z,w) on H x H is called a point pair invariant if
k(gz, gw) = k(z,w) Vg € SLa(R).
Such a function depends only on hyperbolic distance, consequently we can set
k(z,w) = k(u(z,w))

where k(u) is a function in one variable u > 0 and u is given by equation (3.4).
Given a geometrically finite Fuchsian group I' we define an automorphic kernel

(5.1) K(z,w) = Z k(z,yw).
v€T

Given two pont-pair invariants k1, kg we define their convolution product ky * kg
as follows:

(56.2) ki % ko(z,w) = /H k1(z, z)ka(z, w) dp(z).

Let us now consider the following point-pair invariant:

1 ifu(zw) (X - 2)/4,
(5.3) ka2, w) = {0 if u(z,w) > (X —2)/4.

The corresponding automorphic kernel counts the number of lattice points in
hyperbolic circle problem:

Ki(zw) = Zkl(z,'yw) =#{y el :du(z,yw) +2 < X}.
~ver

In particular, by taking z = w = ¢ and using (3.7) we have
P (X,T) =#{y €T : du(i,vi) +2 < X}
:#{(Z 2) el:a®+bv+ 2 +d? < X}

=#{yel:||* < X}.
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Let us now compute the convolution k = k; * k; (cf. Sarnak and Xue [39]). It
will be more convenient to work in D. We have

k(2 w) = /D ki (2, 2k (z, w) dys(z).

In terms of hyperbolic distance p

(1 ip(sw) <T,
ka(z,w) = {0 if p(z,w) > T,

where e + e~ T = X or coshT = X/2.

plo,§ =T

Figure 7. The case p(z,w) =s< T

Now we observe that
k(z,w) = h-area[B(z,T) N B(w, T)],

where B(z,T) is a hyperbolic disc with center 2 and hyperbolic radius T. Let
E = B(2,T) N B(w,T). It is clear that k(z,w) = 0 if p(z,w) > 2T. Suppose
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p(z,w) < 2T. Without loss of generality we can assume that z = 0. The set
of points ¢ satisfying p(0,¢) = T is a Euclidean circle at 0 with center at 0 and

radius R, where
R

Slﬂh(T/Z) = ﬁ,

or equivalently
tanh(T/2) = R.

If p(z,w) = s, w has Euclidean coordinates (tanh(s/2),0). The set of points
p(w,¢) = T is a Euclidean circle with center (ag,0) and radius Ry, where (with
d = tanh(s/2))

1 - R? 1-d?
=g 4 Fo= g
Using hyperbolic cosine law (3.12) we obtain

coshT = cosh s coshT — sinh ssinh T cos &,

coshscoshT — cosh T
cosa =

sinh ssinh T
_ coshT(coshs — 1)  tanh(s/2)
" sinhssinhT =~ tanhT °

Let v = (s/2,0) and suppose c lies on the arc ATB (see Figure 7). The angle
¢ =CZV < a. Let r(¢) = p(z,C); we have

coshr(¢) = cosh(s/2) cosh T — sinh(s/2) sinh T cos ¢
< cosh(s/2) cosh T — sinh(s/2) sinh T cos &

B . ) tanh(s/2)
= cosh(s/2) cosh T — sinh(s/2) sth(_ta_an)
coshT

= cosh(s/2)

Similarly, if D € AF B, the left arc, we get the same estimate by considering the
triangle Dvw to obtain

coshT

cosh p(v, D) < m

Thus E C B{v,r) with
coshT

coshr = m,
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a hyperbolic disc whose area, by (3.10), is

coshT

47rsinh2(r/2) = 2m(coshr — 1) = 2W(m -

1) < 2nel /2,

Thus we have proved the following

PROPOSITION 5.1: For k defined as above we have
(5.4) k(z,w) < eT™*7* if p(z,w) < 2T,
and is 0 for p(z,w) > 2T.

PRETRACE INEQUALITY. Now we recall the following crucial fact about point-
pair invariants.

THEOREM (Selberg): Suppose that ¢ is an eigenfunction of the Laplacian with
A¢ = \p. Then ¢ is also an eigenfunction of the integral operator corresponding
to any point-pair invariant, and its eigenvalue in the latter context depends only
on A, and not on ¢; that is there exists a function h, called spherical function, or
Selberg/Harish-Chandra transform, defined on the set of all eigenvalues (which
in our case is C), such that

(5.5) /H Kz, 4)8(u)dy = h(\)(z).

The Selberg/Harish-Chandra transform is computed in the following three
steps:

+o0
g(v) = / k(u)(u — v)~ % du,
9(r) = 2q(sinh(r/2)?),

400
h(t) =/_ e"tg(r) dr.

In our case of k; = X[o,(x—2)/4) Such computation yields (see, for example,

[14))

Xs XY? for1/2<s<1
TG 1) + O ) for1/2<s<1,
where A = s(s — 1).

Given two point-pair invariants, their convolution product &; * k3 was defined
in (5.2) as

ky x ka(z,w) = /H ki(z, z)ko(z, w) du(z).
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For the automorphic kernel we have

(5.7) K(z,w) = Ki(z,z2)Ka(z, w) du(zx);
I\H

and the Selberg/Harish-Chandra transform of k; * kg is hy(A\)ha(X).
In particular, if we take ks = k; we obtain

(5.8) /H b+ Fr(2, )6 () da(y) = [ (V)26 ().

We are now ready to prove the following proposition.

PRrOPOSITION 5.2 (Pretrace Inequality): Suppose I' is a geometrically finite
Fuchsian group. Let k = ki x ky as above and K (z,w) = > ver k(z,yw). Let
Aoy A1, ..., A; be the discrete eigenvalues below %; do,$1,...,¢; be the corre-
sponding eigenfunctions. Then

K(z,2)> Y [m()Pieiz))
Ai<1/4

Proof:  As was shown by Lax and Phillips in [21], the spectrum of the Laplace
operator on F' = T'\H in [0,1/4) consists of a finite number of eigenvalues.
(This follows from the energy form being positive definite on a subspace of finite
codimension.) Let

Vi=Li(F)= @ ¢i(z) and Vy=L*(F)oW.
Ai<1/4

Consider a direct sum decomposition
L*(F)=V, @V, = L(F) @ LY(F).
The operator K: L?(F) — L%(F) is nonnegative, i.e.,
(Kf,[)>0 YfelL*F).

Its projection onto V; is an integral operator P, K with a kernel

B(z,w) = K(z,w) = Y h(A;)$;(2)é;(w).

Aj<1/4

The operator B = Py, K is a product of two nonnegative commuting selfadjoint
operators; by the standard theorem in functional analysis (see, for example, [27,
page 318}) it is also nonnegative, (Bf, f) > 0.
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Taking now the sequence of functions (for z fixed)

1 ifd(z,w) < 1/n,
falw) = {0 if d(z, Z) > 1/2,

we have
= li >
B(z7 Z) nl_l_)rgo<Bfﬂ5 f‘ﬂ) ) 07
proving the desired result. |
ESTIMATE ON THE NUMBER OF LATTICE POINTS. In this subsection, following

the method of Sarnak and Xue ([39], Theorem 3.1) we will prove the following
estimate on the number of lattice points of I'(p).

PROPOSITION 5.3: Let I'(p) be a principal congruence subgroup of SLy(Z). Then

def T2+e Tl+e
(59) ]\]1(1-'7]'-‘(1)))é Z 1K p3 +'F—+1
v€T(p)
vt

The implied constant is independent of p.

Proof: We have to estimate the number of integers a, b, ¢, d satisfying the fol-
lowing conditions:

(5.10) lal, 18], lc], 1d] < T,
(5.11) ad —bc =1,
(5.12) a=d=1 (modp),
(5.13) b=c=0 {mod p).

There are OE(I;TJ“) + 1 choices of a satisfying (5.10) and (5.12). We now
observe that

(5.14) a+d=2 (mod p?).

Indeed, rewriting the conditions (5.12) and (5.13) in the form
a=Mp+1, b=Ap, d=Xdp+1, c=Ap,

and substituting them in (5.11), we obtain

(Ap+1)(Aep+1) — AzpAgp = 1.
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Opening parentheses and rearranging the terms we easily have
(AL + A2)p = (Asha — M A2)p?,
$0 Ay + A2 =0 (mod p) and
a+d=2+ 1+ A)p =2+ (Ashs — Atha)p?,

proving (5.14).

There are OE(L;—;—() choices of a, d satisfying (5.14) and (5.10). For each satis-
fying choice of a, d let £ = ad — 1. From (5.10), |¢| < T2, so for each choice of
a,d as above the number of b, ¢, satisfying bc = £ is at most O,(T2¢). Hence

T1+e 1+¢
N(T.T(p)) < =3 ( ; +1>+1

T2+e T1+e
e+,

<
P p?

which proves the proposition. |

6. Proof of the Main Theorem

Utilizing the results obtained in the previous sections we will now prove the
main theorem. As we have shown in section 2 for p large enough, we have
A(1)/A(p) = SLo(F,). Now suppose that

QF(p)) N (6(1 - 9),5/36) # UF (1)) N (d(1 — 6),5/36),

i.e., that there is a new discrete eigenvalue A. Let V), be the corresponding
eigenspace. The Laplacian on F(p) commutes with the deck transformations and
consequently SLy(Fp) acts on V). Since by assumption this action is nontrivial,
Vi must contain a nontrivial irreducible representaion of SL2(Fp). A result going
back to Frobenius asserts that any nontrivial irreducible representaion of SLy(F)
has dimension at least P;—l, thus we conclude that

(6.1) m(A, F(p)) > (p—1)/2,

where m(A, F(p)) is a multiplicity of a new eigenvalue A.
To bound the multiplicity from above we evaluate the automorphic kernel
Kx(z,w) corresponding to point-pair invariant k = ky * k1 (with k; defined by
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equation (5.3)) on K, the compact part of F(p), as defined in equation (3.15):

> [ keraiuta)

Y€A(p)

Z Z k(67 2,6 Yy2)dpu(2)

YEA(p) SEA(L)/A(p) T K1

< Y [ Mot <p* ¥ [ ks,

v€A(p) vET(p)

I

K(z,z)du(z)
Ky

where in the last line, not being in the position to exploit the sparsity of the set
of lattice points of A(p), we simply recorded the observation that A(p) C I'(p).
As we will see below, this is a sacrifice we can get away with.

Now recall that for z = ¢ we have

Ky x(ii)= Y kyx(i,7)
YEL(p)

— a b 2 32, 2 2 X—2
—#{(C d)EI‘(p).a +b+c*+d* < i .

For z # i we have

Kixma) =#{(2 ) et Llabod < X2,

where f, is a homogeneous positive-definite quadratic form in a, b, ¢, d, continu-
ously depending on z. Since K, is compact, there is a constant o (independent
of p, X, z) such that

-1 fAabed)
Tt rere -’
and therefore
Kl,X/o’ (’L’ ’t) S KI,X (Z, Z) S Kl,aX(i, Z);

and a similar inequality holds for the convolved kernel K = K x K.

Using the estimate on the number of lattice points given in Proposition 5.3 and
the estimate for convolved point-pair invariant k recorded in Proposition 5.1, we
obtain

X2+e
(6.2) K(z,2)dp(z) < p® (——3—- + X1+€)
Kp p

for arbitrary € > 0.
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On the other hand, using pretrace inequality (Proposition 5.2) and recalling
that the Selberg’s transform of &, is given by equation (5.6), we have

/K(zzdu / S X0 |g;0(2) Pdp(2).
p'\1p<1

Interchanging the order of summation and applying the collar lemma for cusp
(Lemma 4.1) to each of the contiguous cusps and collars in F(p) (see discussion
in section 3 leading to (3.16)) and the collar lemma for flare (Lemma 4.2) to each
of the contiguous cusps and collars in F(p), we obtain

S x [ @l 20 T Xt [ g dns)

Ajp<3 Xip<i
> Y XPirm(),).
Aip<}
So we have
_ X 2te 1
Z X®irm(d;p) < p° (—‘3— +X +6>
1 D
)‘j,p<2
for any € > 0.

Rewriting it as
m()\’p) & X2(1—s) + p3X1—2s’
and taking X of order p®, we obtain

m(A,p) < p?=9).

Combining this with the lower bound (6.1), we get that for p large enough
5

5
6(1—s)>1©s<6¢>)\>§6

Hence we have proved the following

MAIN THEOREM: Let A = (Ai,...,Ax) be a finitely generated subgroup of
SLy(Z) with 6 > 2. Let F(p) = A(p)\H. For p large enough

QF) N |51 -0) 35 ) =AFANN 501 - ), 55).

MAIN COROLLARY: Suppose that § > g. Then Q(F(p)) has a spectral gap, that
is for p large

M) 2 min (M (FQ). ).
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7. Lubotzky’s problem

In this section we address Lubotzky’s problem described at the end of the
introduction.

First, we translate the main corollary into representation theoretic language.
By the Duality Theorem [9], 7, € G (where G = SLy(R)) in the spherical
complimentary series representation of SLy(R) appears as a subrepresentation
of L(T\G) iff A(s) € Q(T\G/K) = QT'\H). Here \(s) = 1/4 — 52, s()) =
m. Hence we can restate the corollary as follows:

THEOREM 2: Notation being as above, let

Ao = Ag(A(1)\H), s0 = s(Ao);
A1 = min(A;(A(1)\H), 5/36), s1 = 8(A1)-

For p large enough no complimentary series representation m, with s € (sy, sg)
occurs as a subrepresentation of L2(A(p)\ SL2(R)).

Let us write

L*(A(p)\ SL2(R)) = L(A(»)\ SL2(R)) €D Vss,

where V;, is invariant subspace corresponding to representation m,_; it occurs
with multiplicity one by the Patterson theorem (quoted in the Introduction) and
Duality Theorem. Another way of stating Theorem 2 is the following.

THEOREM 2': Let R be the following subset of SEZ\(I/{):
(7.1) R=JIL3(A(M)\SLay(R)).

P
Then 7, is isolated with respect to R, i.e., s, & R.

Recalling that we have shown in section 2 that for p large enough we have
A(1)/A(p) = SLy(Fp), let us turn to the family of Cayley graphs

Gp = G(SLa(Fp), {A1,. .., Ax}).

Remark 7.1: We are ignoring a finite set of primes p which are not large enough
to satisfy the conditions of (2.9). But a finite set of graphs trivially forms a
(finite) family of expanders.

The passage from Theorem 2’ to the expansion property of graphs G, is a
straightforward application of Fell’s continuity of induction; we give the details
below.
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Let H{p) = L?(A(1)/A(p)) = L?(SLy(F,)) be the vector space of functions on
a finite set Vj = SL2(F,) with the norm [|f||* = 30, oy, [f(@)|*. Let

Ho(p) = {f €Hp)| Y fl@)= o}.

z€V),

Then A(1) acts on H(p) by

(v)(@) = f(z),

and H(p) = Ho(p) ® Cy, as A(1)-module.

The action of A(1) on V}, is transitive, so the only A(1)-invariant functions on V,,
are the constants Cy,,. Thus Hy(p) does not contain po, the trivial representation
of A(1).

Now inducing to SLy(R) we have (by the induction in stages theorem)

SLo(R) ; _ 1. SLa(R) 1. tA(1) 1 _ v 4SLao(R) SLy(R)
Indyy " 1 =Tndyqy™ Indy o) 1 = Indy (17 po @ Indy )™ Ho(p).

We have

SL
IndA(i)(R) Po > Tsg

Now let T be the subset of A(1) consisisting of representations Hy(p), T =
Up Hy(p). Then py is isolated with respect to 7. Indeed, assume the contrary,
i.e., that there is a sequence of 7; € T such that 7;  py. Using Fell’s continuity
of induction [6] we would then have

IndSt2(®) T ) Tnd5L2(®) 00 > Tsy

A1) A1)
so that
Mgy € Indil('f)(m (Indﬁgg 16 po) CR,

contradicting Theorem 2'.
Recalling the definition of Fell’s toplogy [6], this implies that there is € > 0,
depending only on A(1) and § = {Ay,..., Ax} but not on p, such that Vf € Hy(p)

llvf ~ fll > el fll for some v € S.

Let A be a subset of V of size a and B its compliment of size b = n — a, where
n = |V|. Let

b, ifre A;

—a, ifxze€B.

&)= {
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Then f € Hy and
I £]I* = ab? + ba* = nab

while for every y € S
lvf = fI? = (b+a)?|E5(4, B)],
where
E, A,B)={zeV|zcAandaxye Borz € B and zvy € A}.

To summarize, there exists v € S such that

1 _f = AP @UAP _ pab _ e 4]
04) 2 1B, (4, B)l = Ft > S =gt = S (1= )4l

Hence G(SL2(F,), S) are expanders with ¢ > €2/2. We have therefore proved the
following theorem:

THEOREM 3: Let S = {A,..., Ay} be a symmetric set of generators in SLy(Z)
and let A = (Ay,..., Agx). If the Hausdorff dimension of the limit set 6(L(A)) >
5/6, then G, = G(SLa(F;), S) is a family of expanders.

Now, as promised at the end of the introduction, we give examples of groups
satisfying 6(L(A)) > 3. Let

_ (0 -1 (1 1Y, o _riep-i
s= (0 3). 1= (b 1) s -mer

Let A, = (S, S1,...,5n). We claim that for n sufficiently large §(L(A)) > %, or
equivalently that Ag(A,\H) < 5%.

To this end, we recall that by the variational characterisation of the bottom of
the spectrum

Vu|’d
(7.1) Xo= iof fifl—%—”.
wtip, Tredn

The fundamental domain of A,, is an exterior of n + 1 circles Cy, Ci,...,Cyp (see
Figure 8 for n = 3).
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Figure 8. Fundamental domain of As.

Let us take the following test function u:

un,A,e(x + zy) = fn(z)he,A(y)a

where
0 for x < -2,
24z for 2 <2< -1,
fa(z) =141 for -1<z<2n+1,
n+2—z for2n+l<z<2n+2,
0 for z > 2n 4+ 2;
and
¢ for 0 <y <k,
_J1 for e <y < A,
he,a(y) = 2-% for A<y <24,
0 for y > 24;

the constants € and A are fixed below. Computation yields

f_rn [Vt ¢4/ dp

)\O(fn) S f}-n U’iye,Adﬂ
< % (l+%A+%+n(%+§e)>
e ted
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If we take A = 9 and ¢ = ‘%8, we obtain that for n greater than 4392 we
have Ao(Fp) < 35—6, hence for these n the groups A,, come under the purview of
Theorem 3.
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