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A B S T R A C T  

A celebrated theorem of Selberg states that for congruence subgroups of 
SL2(Z) there are no exceptional eigenvalues below 3/16. Extending the 
work of Sarnak and Xue for cocompact arithmetic lattices, we prove a gen- 
eralization of Selberg's theorem for infinite index "congruence" subgroups 
of SL2(Z). For such subgroups with a high enough Hausdorff dimension 
of the limit set we establish a spectral gap property and consequently 
solve a problem of Lubotzky pertaining to expander graphs. 

1. I n t r o d u c t i o n  

Let A be a finitely generated subgroup of SL2(Z). In dimension two being finitely 

generated is equivalent to being geometrically finite, i.e., the fundamental  domain 

~" = A \ H  has finitely many  bounding sides [2]. The limit set of A, denoted by 

L(A), is a subset of R U ce; it was observed a century ago by Poincar5 and Klein 

tha t  if .T" has infinite volume (and A is not elementary) L(A) is a Cantor-like 

set, we will denote by ~(L(A)) its Hausdorff dimension. The spec t rum of the 

Laplacian A on L2(9 v) will be denoted by ~(gr).  

The spec t rum of geometrically finite Fuchsian groups was investigated by Pat-  

terson [32, 33]; Sullivan [46], and Lax and Phillips [21] generalized and extended 

his results in higher dimensions. The main result for ~ ( A \ H )  is the following 
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1 THEOREM (Patterson, Lax and Phillips): Assume that 6 > ~. Then 

(1) The bottom of the spectrum 1, A0(9 v) = 5(1 - 6 ) ;  it is an isolated eigenvalue 
of multiplicity one. 

(2) There are  .itely many discrete eigenvalues in the interval [0, 1/4). 
(3) Ifvol(9 r )  = oo the spectrum ~ ( ~ )  is continuous in [1/4, co]. 

Now let A(p) -- t n F(p), where F(p) is a principal congruence subgroup of 
level p: 

(1.1) F ( p ) = { ~ ' E S L 2 ( Z ) : 7  = ( ~  ~ ) m o d p } .  

As a subgroup of finite index in A(1) = A, A(p) has the same bottom of the 
spectrum, Ao(A(p)\H) = A0(h(1)\H). 

We are interested in estimating AI(A(p)\H) as p --+ c~. For congruence sub- 
groups Selberg proved the following celebrated result [42]. 

THEOREM (Selberg, 1965): Let P'(N) be any congruence subgroup of SL2(Z), 
i.e., subgroup containing principal congruence subgroup r (N) .  Let X ' ( N )  = 
F ' (N) \H .  For N >_ 1 

(1.2) AI(X'(N)) > 3/16. 

In 1995 Luo, Rudnick and Sarnak [26] established a better bound 2 by using 
properties of the Rankin-Selberg convolution L-functions on GLa: 

THEOREM (Luo, Rudnick, Sarnak, 1995): 

(1.3) AI(X ' (N))  > 171/784, 

taking us about halfway beetween Selberg's Theorem and the following remark- 
able conjecture of his: 

CONJECTURE (Selberg, 1965): Conditions being as above 

(1.4) AI(X'(N)) _> 1/4. 

The conjecture is known to be true for groups of small level [11]. It remains one 
of the fundamental unsolved analytic questions in modular forms (see [38] for a 

1 To put it sonorously, ~ la Mark Kac [16], one can hear the fractal shape of the 
boundary in the bass note. 

2 Shortly afterwards, Iwaniec [15] established a sligtly weaker bound AI(X'(N)) > 
lo using only GL2 theory. 49, 
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tantalizing discussion). It has many applications to classical number theory (see 
[14, 37], for example); from the point of view of modern representation theory it 

is a generalisation [40] of the famous Ramanujan conjectures solved by Deligne. 
Selberg's approach was to relate this problem to arithmetic questions about 

Kloosterman sums; the key ingredient in his proof is Weil's bound 3 on Klooster- 

man sums [49]. He remarked that '% natural question arises [as to] what happens 

if we give up the assumption that F ~ is a congruence subgroup", but pointed out 

that the "methods which depend on estimates for Kloosterman sums are not 

capable of extension to the general case" and constructed examples of surfaces 

(which correspond to subgroups of SL2(Z)) with arbitrarily small first eigen- 

value; examples of compact Riemann surfaces with this property were also given 
by Randol [35]. 

In 1991 Sarnak and Xue [39] considered the case of cocompact arithmetic 

subgroups of SL2(R). By the classification results of Well a cocompact arith- 
metic subgroup is commensurable with a group CA derived from certain types of 

quaternion algebras A over F,  where F is a totally real number field with ring 

of integers O. The group CA has its family of congruence subgroups, defined 
similarly to the above by 

(1.5) A(p) = {c~ E (I) [ a -- 1 mod(P)}.  

Sarnak and Xue obtained the following result (cf. also Huxley [12] where the 
number 5/36 appears for related reasons) 

THEOREM (Sarnak and Xue, 1991): Let F c ~A be a subgroup of finite index. 

Let F(P) ---- F A A(P).  For large enough prime ideals P of O 

D(F(P) \H)  n [0, 5/36) = D(F(1)\H) n [0, 5/36). 

COROLLARY (Sarnak and Xue, 1991): For F cocompact as above and P a prime 
ideal of sufficiently large norm 

AI(F(P)\H) _> min(Al(r(1)\H),  5/36). 

The proof of Sarnak and Xue stems from the observation that if the spectrum 

12(F(P) \H)  has a new eigenvalue A in [0, ¼), it must be of high multiplicity 4. This 

3 Weil's bound in turn is a consequence of the Riemann hypothesis for curves which 
he had proven earlier. Iwaniec [13] has given a proof of (1.2), which, while using 
Kloosterman sums, avoids appealing to Weil's bound. Gelbart and Jacquet [8], 
using methods very different from Selberg's, showed that ~ is not attained in 
(1.2). 

4 For the origin of this idea see [38]. 
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follows (as we explain in more detail in Section 6) from the result going back to 

Frobenius, that  the smallest dimension of a nontrivial irreducible representation 

of SL2(Fp) is ~ ,  which is large compared to the size of the group (which is of 

order p3). The proof then proceeds by estimating the number of lattice points 

and using the (pre)trace formula to show that  for small eigenvalues one cannot 

accommodate such a high multiplicity. 

Proceeding along the lines of Sarnak and Xue we prove the following result for 

infinite index subgroups of SL2(Z), providing in passing a new proof of Selberg's 

theorem 5 with somewhat weaker bound. 

MAIN THEOREM: Let A = (A1, . . . ,Ak> be a finitely generated subgroup of 

SL2(Z) with 5 > 5. Let 9r(p) = A(p)\H.  Forp large enough 

f~($'(p)) n [5(1 - 5), 5/36) = n(~'(1)) n [5(1 - 5), 5/36). 

MAIN COROLLARY: Suppose that 5 > 5. Then ~(br(p)) has a spectral gap, that 

is for p large 

Al(br(p)) _> min(Al(br(1)), 5/36). 

ORGANISATION OF THE PAPER AND STRATEGY OF THE PROOF. The observa- 

tion that  the multiplicity of new eigenvalues is large, 

re(A, ~'(p)) > ( p -  1)/2, 

carries through to our context, once we prove that  for p large enough A(1)/A(p) - 

SL2(Fp); we attend to this matter  at once in section 2. The proof of the theorem 

hinges on bounding the multiplicity from above, more precisely, obtaining the 

bound 
m(A,.T'(p)) << p6(1-s), 

where A -- s(1 - 1). In order to extend the approach of Sarnak and Xue in 

obtaining this bound, the main obstacle we have to overcome is the infinitude of 

the volume of ~(p) .  After the review of the pertinent geometric facts, we begin 

the attack by decomposing the fundamental domain into compact and infinite 

parts in section 3. Following that,  in section 4, we prove the key collar lemmas, 

(Lemmas 4.1 and 4.2) which state, rougly speaking, that for low-lying eigenvalues 

(below ¼) the L 2 norm of the eigenfunction of the Laplacian in a collar of fixed 

width, contiguous with a cusp or a flare, is of the same order of magnitude as 

5 It follows from the main theorem and the well known fact (see, e.g., [37], p. 34) 
1 that AI(SL~(Z)\H) > Z. 



Vol. 127, 2002 INFINITE INDEX "CONGRUENCE" SUBGROUPS 161 

its L 2 norm in the whole cusp or flare. In a sense, this lemma could be viewed 

as a generalization of the following fact about  the zero eigenvalue and constant 

eigenfuction (area) in the cusp: the hyperbolic area of the collar of width In 2 is 

the same as the area of contiguous cusp. 

Arithmetic of the problem comes into play in the following estimate 6 on the 

number of lattice points (the implied constant is independent of p): 

T2+e Tl+e gl(T,r(p))~ f ~ 1 << - ~ -  + ~ V -  + 1. 
~/EF(p) 
II~ll_<T 

This estimate is proved in section 5, where we also set up the trace formalism 

by proving the pretrace inequality (Proposition 5.2), and computing the Selberg 

transform and convolution of a point-pair invariant given by characteristic func- 

tion (Proposition 5.1). In section 6 we put everything together and prove the 

main theorem. 

Then in section 7 we exploit the consequences of the main theorem to address 

the question of Alex Lubotzky, pertaining to expander graphs. 

E x p a n d e r  g r a p h s  are widely used in Computer  Science, in areas ranging 

from parallel computat ion to complexity theory and cryptography. Identifying 

synapses with the vertices and dendrites with the edges, we can view the network 

of 1012 neurons in the brain as an expander graph. Intuitively, to be an expander 

graph, a graph has to be sparse and highly connected. Clearly, high connectivity 

is desirable in any communication network. The necessity of sparsity is, perhaps, 

best seen in the case of the brain-graph: since the "wires" have finite thickness, 

their total  length cannot exceed the quotient of the average volume of one head 

and the area of the wires' cross-section. Also note that  the thinner the wire, the 

longer the time of propagation. 

There are several ways of making the intuitive notions of connectivity and 

sparsity precise; the simplest and most widely used is the following. 

Detlnition 1.1: Given an undirected k-regular graph G and a subset X of V, the 

e x p a n s i o n  of X, c(X), is defined to be the ratio IY(Z)l/IXl, where g(x)  is a 

set of neighbors of X. The expansion coefficient of a graph G 

(1.7) c(G) = inf {c(X) l ,Xl < ~lG,}. 

6 It is only here that we use the fact that the homomorphism A -+ SL2(Fp) is 
the reduction modulo p and not an arbitrary one; in fact most of the proof 
goes through with the much weaker assumption A(1)/A(p) ~ SL2(Fp). We are 
indebted to a referee for this remark. 
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The expansion coefficient is a discrete analogue of Cheeger's constant for Rie- 

mannian manifold. The discrete analogue of the Laplace operator is the nearest 

neighbor averaging operator; there is a discrete analogue of Cheeger-Buser in- 

equalities relating c(G) to )h (G) (see [24] for a very clear exposition of this and 

other topics pertaining to expander graphs). 

Definition 1.2: A family of k-regular graphs Gn forms a family of expanders if 

there is a fixed positive constant C, such that 

(1.8) liminfc(Gn) > C. 
n - - 4 o o  

By the discrete Cheeger-Buser inequality Gn is a family of expanders iff 

(1.9) l i m i n f ~ l ( ~ )  > 0. 
n - - + o o  

It is not difficult to see that  a random regular graph is a good expander. How- 

ever the explicit construction of expander graphs is much more difficult and was 

first achieved by Margulis [29], who used Kazhdan property (T) from represen- 

tation theory of semi-simple Lie groups [17]. Lubotzky, Phillips and Sarnak [22] 

constucted expanders based on Selberg's theorem, and later the optimal ones 

based on the (proven) Ramanujan conjectures. As Lubotzky wrote in [25]: 

What is very frustrating is that all these deep theories give some 

examples with very special sets of generators. A small change of the 

construction - which seems to be meaningless from the combinatorial 

point of view - leaves these tools helpless. 

Lubotzky illustrated this by the following example. For a prime p _> 5 let us 

define 

°  1)(110)} 
{(10 01)} 

1 3 °1)} 
and for i = 1,2,3 let 6~ = ~ (SL2(Fp),S~), a Cayley graph 7 of SL2(Fp) with 

respect to S~; these graphs are connected as we will show in the next section. 

7 A Cayley graph of a group G with respect to a symmetric set of generators S, 
which we denote by g(G, S), is a graph whose vertices are elements of G and 
a E G is adjacent to ~ra, a E S. 
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The graphs gp can be viewed as a "discrete approximation" of the hyper- 
bolic manifolds Xp -- Ai(p)\H, where A i is subgroup of SL2(Z) generated by 
((~ ~), ((~ ~)). By Selberg's theorem the families Xp 1 and Zp 2 have a spectral 

gap (form a family of "expander surfaces") and from this one deduces (as we do 

in section 7) that g~ and 62 are families of expander graphs. Given this fact, it 

is difficult to believe that  g3 is not an expander family. Note, however, that the 

group generated by ((1 31) ' ((~ 01) } has infinite index and thus does not come 

under the purview of Selberg's theorem. These considerations led Lubotzky to 

pose the following questionS: can a finite set of elements in SL2(Z) give rise to a 

family of expanders even if the subgroup they generate has infinite index? 

Recently Shalom [43] proved that such expanders exist and gave an explicit 

example of an infinite-index subgroup in PSL2(Z[w]) (where w is a primitive third 
root of unity) yielding a family of expanders; his approach (based on the use of in- 

variant means on the profinite completion of the finite groups) is non-constructive 

and does not yield explicit examples in SL2(Z). Restating the corollary of the 

main theorem in representation-theoretic language and using Fell's continuity of 

induction we prove the following theorem, complementing results of Shalom in 

addressing Lubotzky's problem. 

THEOREM: Let  S = { A1, . . . , Ak  } be a s y m m e t r i c  set o f  generators in SLz(Z) and 

let  A = ( A 1 , . . . ,  Ak) .  I f  the  Hausdorf f  dimension o f  the  l imi t  set 5(L(A)) > 5/6 

then gp = G(SL2(FR), S)  is a fami ly  o f  expanders.  

After proving this theorem in section 7 we conclude by giving the examples of 

generators satisfying its conditions. 
5 (in For the subgroups with Hausdorff dimension of the limit set less than 

particlular for the group generated by ((~ ~), ((~ ~)), whose Hausdorff dimension 
was found to be 0.753 ± 0.003 by Phillips and Sarnak [34]) the question remains 

open 9 and demands for its solution a fundamentally new idea. Several remaining 

problems are more tractable: extending the main theorem to SL2(C) (where in 

the cocompact arithmetic case Sarnak and Xue [39] have a result analogous to 
the one in SL2(R)) and finding conditions (perhaps resembling those in [7]) under 

which a subgroup has a high enough Hausdorff dimension of the limit set. 

8 The general problem, raised by Lubotzky in [24, 25, 23], is whether being an 
expander family is the property of groups alone, independent of the choice of 
generators. Very little is known about this intriguing fundamental problem; see 
[44] for a discussion. 

9 In fact, numerical experiments of Lafferty and Rockmore [18, 19, 20] indicate that 
a "generic" element in the group ring of SL2(Z) has a spectral gap (cf. [7]). 
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2. A little algebra 

In this section we prove that for p large enough A(1)/A(p) ~ SL2(Fp). Along the 

way we show that the graphs G(SL2(Fp), (A1, . . . ,  Ak)), described at the end of 

introduction, are connected and establish a lower bound for their girth. 

We can assume that A(1) is torsion free, if necessary passing to a subgroup 

of finite index and using Selberg's Lemma [41, 1], which states that a finitely 

generated group of matrices over a field of characterisitc zero has a torsion free 

subgroup of finite index. 

Now consider A(2) = A(1) ~ r(2) .  The group F(2) is a free group, as its 

subgroup A(2) is free as well. Moreover, since Hausdorff dimension of the limit 

set of A(1), and, consequently of A(2), is greater than ½, A(1) is nonelementary 

and hence nonabelian. Now by Stallings's Theorem [45], which states that a 

finitely generated torsion-free subgroup which contains a free subgroup of finite 

index is free, we conclude that A(1) is free as well. 

Consider now the Cayley graphs 

Gp = ~(A(1)/A(p),S) ,  S = {A1, . . . ,Ak}.  

We estimate their girth C(Gp) (the length of the shorterst cycle) from below 

following the method used by Margulis [30]. To this end we estimate the quantity 

d(Gp), defined as the largest integer such that any two walks in Gp of length less 

than d(Gp) starting at E = (~ o) end at different vertices. (By a walk of 

length k we mean a sequence of steps along adjacent vertices Xo, . . . ,  xt, such 

that  xj-1 ¢ xj+l.)  By the homogeneity of Gp we have 

C(Gp) >_ 2d(Gp)-  1. 

Let Cp be a homomorphism of SL2(Z) onto SL2(Fp) which associates with each 

matrix X • SL2(Z) the matrix Cp(X), obtained by reducing each element of X 

modulo p. We have 

h(1) /h (p)  ~ Cp(A(1)) ~ Yp, 

where Yp is some subgroup of SL2(Fp). 
Let us set 

Al,p = Cp(A1),. . . ,Ak,p = Cp(Ak); Sp = Cp(S). 
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So we have ~p = 6(Yp,  Sp). Assume we are given two walks in Gp, p = 

(Po ,P l , . . .  ,P~) and s = (So, s l , . . . ,  st), bo th  s t a r t i ng  at  E = P0 = so and having a 

common end p~ = st. By the defini t ion of the  graph  @ ,  we find t h a t  Pi = Pi- lVi  

and s j  = s j - l w j ,  1 < i < r, 1 < j < t, where v i , w j  6 Sp. The  w a l k s p a n d  s 

cor respond to the  words V -- ( v l , . . . ,  v,.) and  W = ( w l , . . . ,  wt) over Sp. Clear ly  

Pi = v l  . . .  vi and  s j  = w~ . . .  wj.  

Hence, since p~ = st, we have 

(2.1) v l . . . v r  = w l . . . w t .  

Let us define the  word 1 / =  (V~l,.. . ,  ~ )  by 

A} -1 i f v i  A/,~ 

and 14 z = (¢51, . . . ,  wt) analogously.  

By our defini t ion of a walk, the  words V and W and hence the  words 1 / a n d  

l ~  are reduced.  Since the  walks p and  s are different and  P0 = So = E ,  the  words 

V and  W and thus the  words 1 / a n d  W are  different. As V and  W are  different 

reduced words over A 1 , . . . ,  Ak, we infer t ha t  

(2.2) v - 1 . . ,  v~r : ~  I1~1 • • . %t)t 

since there  are no mul t ip l ica t ive  re la t ions  between A 1 , . . . , A k .  On the o ther  

hand,  by (2.1) we have 

(2.3) Cp (~  . . .  ~r) = C A ~ . . .  , ~ ) .  

Therefore  all the  e lements  of the  m a t r i x  Vl . . .  v'r - ~51 ..  • v)t are divisible  by p 

and a t  least  one of t hem is different from zero by (2.2). 

We conclude t ha t  

(2.4) I1~1...~r - ~ . . . ~ l [  _> p, 

where the  no rm of a m a t r i x  L is defined by 

HLxN 
IILII = sup , 

x~0 Ilxll 

and  the  no rm of  x = (x l ,  x2) is given by tlx[] = V ~ I +  x22. F rom (2.4) we infer 

(2.5) max]IvY1 v;ll, ll~l ~*ll > p 
. . . . . .  - -  2 "  
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Let (~ = maxk ilAk I1" By submultiplicativity of the norm of matrices, from (2.5) 
we deduce 

(2.7) 

and consequently 

(2.6) (~max(r,t) > P 
- 2  

Keeping in mind the definition of d(@), by (2.6) we obtain the inequaliy 

d(~p) _ log~ (P ) ,  

(2.8) C(Gp) _> 21og~ (P )  - 1. 

Let us recall now the classification of subgroups of SL2(FB) from [47]. 

THEOREM 1: Let p be a prime with p > 5. Then any subgroup of SL2(Fp) is 
isomorphic to one of the following subgroups: 

(1) The dihedral groups of order 2(~3-2~1 ) and their subgroups. 

(2) A group H of order p ( ~  ) and its subgroups. If  i l l  =- N1 is a subgroup of 
H, then its factor group H/H1 is cyclic. 

(3) A4, $4, or As. 

Following Davidoff and Sarnak [5] we now prove that Yp ~ SL2(Fp) for p large 
enough. Suppose not. Then Yp is a certain proper subgroup listed in Theorem 

1. Certain proper subgroups can be eliminated immediately as possibilities for 
Yp since they contain elements of small order which clearly violate the girth 
bound (2.8). However, we see that the remaining subgroups have trivial second 

commutator, that is to say for all Xl, x2, Yl, Y2 E Yp we have 

- - I  --1 - - I  --1 - - I  --1 - - i  - - i  (xlylxl yi )(x2y2x2 y2 )(y Xlyl )(y  2y2 1= 1. 

If we take xl,  Yl, x2, Y2 to be any generators in the construction of our graphs, 

then we see that this condition provides a closed cycle of length 16. However, 

such a cycle also violates the girth bound whenever 

So for p > 2~  17/2 we get a c o n t r a d i c t i o n .  
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3. A n a t o m y  of  t h e  f u n d a m e n t a l  d o m a i n  

We will use alternately the upper half-plane and unit disc models; in this sub- 

section we will summarize the pertinent formulae. The Poincar6 upper half-plane 

model is the following subset of the complex plane C: 

H =  { z = x + i y  e C [ y  > 0}, 

with the hyperbolic metric 

(3.1) 
1 ds 2 = ~ ( d x  2 -4- dy2). 

The distance function on H is explicitly given by 

Lz - ~1 + Lz - ~1 
(3.2) p ( z , w ) = l o g l z  @1--1 z - w l "  

It will often be more convenient to use the following expression: 

cosh p(z, w) = 1 + 2u(z, w), (3.3) 

where 

(3.4) 

The mapping 

IZ-- 2 1  u(z ,  ~ )  - w ,  

4.~z~w " 

z - i  
z > - -  z C H  

z + i '  

maps H biholomorphically onto the unit disc D, 

D =  { w = x  + i y E C [ x  2 + y 2 < 1 } .  

The induced metric is 

(3.5) ds 2 = 4(dx2 + dy2) 
(1 - (x 2 + y2))2" 

The ring M2 (R) of two by two real matrices is a vector space with inner product 

given by 

(g, h) = trace(ght). 

One easily checks that  Ilgll = <g,g}l is norm in M2(R) and that  

(a (3.6) Ilgll 2 - - a  2 + b  2 + c  2 + d  2 f o r g =  c " 
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By taking z = w = i in (3.4) we obtain that 

(3 .8)  [19112 = a 2 + b 2 + c 2 + d 2 = 4u(gi, i) + 2. 

The Riemannian measure on H is expressed in terms of Lebesgue measure by 

the formula 

(3.8) 

and on D by the formula 

(3.9) 

dxdy 
d l t ( z ) -  y2 , 

The area of a hyperbolic disc of radius r is 

(3.10) area(r) = 47r sinh2 ( 2 )  . 

C 

b 

A c a 

Figure 1. Hyperbolic triangle. 

Let T be a hyperbolic triangle (see Figure 1) with vertices labelled A, B, C; 

the sides opposite these vertices labelled a, b, and c respectively, and the interior 

angles at the vertices a, /3,  and 3'. 

The following hyperbolic sine and cosine laws hold: 

sinh a sinh b sinh c 
(3.11) s ina  s ins  sin7 

(3.12) cosh c = cosh a cosh b - sinh a sinh b cos 3'- 



Vol. 127, 2002 INFINITE INDEX "CONGRUENCE" SUBGROUPS 169 

We will need the notion of F e r m i  c o o r d i n a t e s  [3]. They are defined as follows. 

Let y be the geodesic in the hyperbolic plane parametrized with the unit speed 

in the form 

t--+~(t)~H, t •R.  

Then ~ separates H into two half-planes: a left hand side and a right hand side 

of ~?. For each p C H we have the directed distance p from p to ~. There exists a 

unique t such that the perpendicular from p to 7/meets 7/at ~?(t). Now (p, t) is a 

pair of Fermi coordinates of p with respect to 7/. In these coordinates the metric 

tensor is 

(3.13) ds 2 = dp 2 + c o s h  2 pdt 2. 

DECOMPOSITION OF THE FUNDAMENTAL DOMAIN OF ~'(p). We begin by de-  

composing the fundamental domain of a given geometrically finite group A(1). 

As is well known (and discussed, for example, in [32]) we have a decomposition 

of the fundamental domain Jc(1) =- A(1)\D of the following form: 

~-(1)=K:(1)U U cuspiU U flarej 
ieCu(1) jeFl(1) 

where 

(1) ~(1) is relatively compact in D 

(2) Cu(1) is a set of cusps of 9v(1). Each cuspi is isometric to a standard 

cuspidal fundamental domain P(Yi) of the form 

P ( Y )  = {z = x + i y  [ 0 < x < 1, y > Y}, 

based on a horocycle 

hy  = {x + iy I y = Y}. 

(3) F/(1) is a set of flares of F(1). Each flarej(a) is isometric to a standard 

hyperbolic fundamental domain F (a )  of the form 

F(a)  = {z:  1 < [z] < exp(n);0 < arg(z) < a } ,  

where a < ~/2. 
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2Y 

Y 

Figure 2. A cusp and its collar. 

Now we subdivide each cuspi and flarej into a collar of width  In 2 and a 

contiguous cuspi and flarej respectively: 

c u s p / =  collari u~-ff~pi and flarej = collarj uf larej .  

In more  detail  the definitions are as follows. For a cusp (see Figure 2), a collar 

of width  a is a set  of points  in P(Y) whose distance from hy does not  exceed a: 

collara(Y) = {z E P(Y)  I p(z, hv) < a}. 

Fixing a = In 2 we have 

collar(Y) = { x + i y  I 0 < x < 1 ,Y < y < 2Y}. 

In other  words, collar(Y) is a set of points  between the horocycles hy and h2y. 

Given a hyperbol ic  fundamenta l  domain  F(c~) (see Figure 3) let r/ be the 

geodesic T -+ 7/(T) = ie T. 

In t roducing Fermi coordinates  based on ~/we obta in  the descript ion of a flare 

as a surface [p0, c¢) x [0, a) with Riemannian  metr ic  

(3.14) d8 2 = dp 2 + cosh 2 pdt 2. 
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Y 

X 

Figure 3. Hyperbolic fundamental domain. 

Here p is the distance to the geodesic ~, P0 = p(a) = 1 / s i n a  (see Figure 4 and 

formulas below). Using elementary hyperbolic geometry we easily obtain 

c o s h p = l / s i n ¢ ,  s i n h p = c o t ¢ ,  t a n h p = c o s ¢ .  

By a collar of width a in a flare (see Figure 5) we mean a set of points in F (a ) ,  

whose distance from ~ does not exceed p(a) + a: 

coUara(a) = {z e F(a) I p(a) ~ p(z) ~ p(a) Jr a); 

fixing again a = In 2 we have 

collar(a) = {z E F (a )  I p(a) < p(z) <_ p(a) + ln2}. 
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X ̧ 

Figure 4. Polar coordinates in a flare. 

~_ _ ~  Po 

Figure 5. Flare and its collar. 

So we have a decomposition 

Jv(i)=K:(i)U U c o l l a r ~ u ~ u  U collarjUflarej. 
ieCu(1) jEFI(1) 

We define the compact part of 9v(1) as follows: 

K:(1)=KJ(1)U U collariU U collarj. 
ieCu(1) jeFl(1) 
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Now consider A(p) and $-(p) = A(p)\H. As we have shown in section 2, for p 

large enough the deck group of covering 7rp: 5r(p) --+ 9v(1) is SL2(Fp). We define 

t:(p) -- U ~K:(1). 
~'eA(1)/A(p) 

We proceed to examine the structure of the lifted cusps and flares. 

As a surface, cusp is isometric to 

] - c~,Y] × S 1 =] - oo, Y] × R/[t -+ t + 1] 

with the Riemanninan metric 

ds 2 = dp 2 q- e2pdt 2. 

The horocycles hy and h2y bounding the collar map to closed curves Cy and 

C2y of lengths 1 / Y  and 1/2Y respectively. Now consider the lifting of a loop 

Cy. Since the covering ~rp: X(p) -+ X(1) is regular, the points in X(p) with the 

same projection in X(1) are inditinguishable from each other and each lift of the 

loop Cy is conjugate to any other. Consequently 

 ;l(cy) = U c n yp, 
j=l 

where C~p is a loop of length n/Yp and m n =  I SL2(FB)I. We repeat the same 

argument for C2y and observe that while we have no control over the values of 
Yp, the width of a collar, defined along the geodesic ~, is preserved. 

Making the same argument for a flare and repeating it for each flare and each 

cusp we obtain the following: 

m i  

7 r p l [ ~  L~ collari] = U [cusp---~.r,~p 52 collarr~p], 
/--1 
nj 

7 r p ' [ ~  U collard]-- U [flare;,p 8~ U collarj,p], 
k=l 



174 A. G A M B U R D  Isr. J. Math .  

2Y 

:, 2Yp 

Yp 

m copies 

Figure 6. Lifting a cusp and its collar. 

where cusp[,p and collar[~ v are contiguous cusp and collar of width ln2, and 

flare~-,~ and collar~,~p are contiguous flare and collar of width ln2, respectively. 
Moreover, for each i and each j we have 

r i m i  = n j s j  = I SL2(FB)]. 

Now collecting the lifting of the collars and lifting of/C(1) we obtain the compact 
part of ~'(p): 

m i n j  

(3.15) ~(P) = 7rp -I(K;(1)) =tc(p) U U Uc°l lar ip  U~: U U collarj,p.SJ 
ieCu(1) l=l jEFI(1) k----1 

The collar lemma, to be proved in section 4, will be applied to each of the 
contiguous liftings of collars and cusps 

(3.16) 

and collars and flares 

collari,p UcusPi,p 

(3.17) collar~p Oflare~,~. 
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4. Co l l a r  l e m m a  for  c u s p  a n d  f la re  

COLLAR LEMMA FOR CUSP. Given F, a geometrically-finite subgroup 1° of 

SL2(Z), let f • A~(F\H) be an automorphic form with respect to F for the 

eigenvalue A = s(1 - s): 

( a  + ~)f  = 0, 

f('yz) ---- f ( z )  V~/ • r. 

Assume, moreover, that  

where 

y e L2(r\H) = {S • A( r \H ) I  II/ll < co} 

(f ,  g)def f f ( z )g(z)d# 
= J F  

and normalized to have norm 1, [Ifll --- 1. 

We want to examine the behavior of f in cusps and flares of F. We begin with 

a cusp. 

Let P ( Y )  be a cuspidal fundamental domain, the semistrip 

P ( Y )  = {z = x + i y  I 0 < x < q,y > Y }  

with a collar 

C(Y)  = { x + i y  I 0 < x < q ,Y < y < 2Y}. 

LEMMA 4.1 (Collar Lemma for Cusp): In the notation as above for any Y E 

(0, oo) and s • (So, 1), where So > ½, there is a constant Cso (independent of Y )  
such that we have 

f~Y E If(z)t2a,(z) 
f~7 f :  If(z)12~,(z) >- ~.o > o. 

Proo~ We can assume that  q = 1: our domain can be conjugated to such a one 

with Y getting mapped to Y/q. As discussed for example in [14], we have the 

following expansion: 

S(z) = ](o)y 1-s + ~ ](n)w,(nz) 
n¢O 

where 

Ws(z) -- 2yl/2Ks_1/2(21ry)e(x). 

10 We are interested in A(p), but the results to be proved in this section hold for 
cusps and flares of any geometrically finite subgroup of SL2(R). 
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We get by Parseval 

Hence 

(4.1) 

A. GAMBURD 

1 

I](0)Yl-812 + ~ I](n)Ws(iny)]2 = ~o If(x + iy)12dx" 
n#O 

1 

f? + E ]](n)12 W2(iny)y-2dy" 
n#O 

1 For the zeroeth term we get Let u = s - ~. 

(4.2) f r  Y~ y-~Sdy _ y-2~, _ (2y)-2~ 
f~y y-2Sdy (2Y) -2~ 

= 22u - 1 > 0. 

Isr. J. Math.  

(4.4) 

where 

(4.5) /v(x)d-----ef E k!F(k + 1 + v) = k!F(k + 1 + u)" 
k=O k=O 

The following asymptotic estimates hold: 

(4.6) g~(x) ,,~ - - ~  as x --~ O. 

F o r 0 < x < l  

(4.7) K~(x) 2~-lF(v) - + o ( x 2 - ~ ) ,  
X v 

The lemma would thus follow from the following claim: 

CLAIM 4.1: ForanyY  E (0, c~), v E (u0, 1/2) we have 

(4.3) f2Y ~ d x  
f2Y --7 -- d-  >- Cvo > O. 

Remark: 1. The K-Bessel function K~ is real for v real. 
2. When we apply this claim to the n-th term of equation (4.1) the n- 

dependence scales away, so this suffices. 

Proo£" We recall the following facts regarding the Bessel function K~(x) [48]. 

One way of defining it is via the series 

7r 

g ~ ( x ) ~ f  2 sin(Try) (I_~(x) - I~(x)), 
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0 1 where the implied constant is uniform for u • (u0, ½) and x • ( , ~). 
For x > 1 + u 2 

= 7r (1 + u 2 ] )  
(4.8) K~,(x) (~xx) ½ e-~ (1 + 0 \ ~ - - - - /  , 

where the implied constant is uniform for u • (Uo, ½) and x > 2. 
More precisely, with # = 4u 2 

~ 2 ~  _x{ u - 1  ( u - 1 ) ( u - 9 )  } 
Kv(x)~ - - e  1 + ~ +  2!(8x) 2 + . . . .  

Occasionally it would be more convenient to work with the integral represen- 

tation of K,(x) :  

J5 (4 .9 )  K~(x) = e - ~  cosht cosh(ut)dt. 

Prom the integral representation the following two properties easily follow: 
(1) For fixed u throughout the x interval (0, oc) the function K,,(x) is positive 

and decreasing. 
(2) If x > 0 is fixed, then throughout the u interval (0, oo) the function Kv(x) 

is increasing. 
We divide the analysis of (4.3) into three parts depending on the value of Y. 

We begin with large values of Y, Y > A, where the constant A is fixed below. 

Equation (4.8) and the comment following it imply that there is a constant C2 

such that 

(4 0) ( )11 
uniformly for all x _> 2 and u E (uo, ½). Let 

(4.11) 

For Y > A we have 

from which we obtain 

f~ Y K 2 (x) 
dx 

x 

e-x 
_<c2  _~ 

X2 

A -- max(4C2, 2) + 1. 

,ff f 2Y e-2x 2 f 2 Y  e-2x 
Jy 7 d x  < C 2 Jy ~ d x ,  

; Y  e-2X /y2Y e-2x 
>~_ " %v-dx - c~ - T d x  

> e-2~dx e-2~dx - 2 (2Y) 2 - C2 

7t" e -2Y 2 e-2Y 
> 2 16Y 2 C~ ~y-~. 
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Similarly we have 

- - ~ - ~ x  < c~ - ~ - ~ x ,  
y X - 2  y -- y 

from which we obtain 

K~.__(x) dx < - - - ~ d x  + C 2 - -~--dx  
y X - - 2  y y 

?r e - 4 Y  2 e - 4 Y  

-~ 8y------ ~ + C2 - ~  . 

Hence for Y > A we have 

e - 2 Y  2 e - 2 Y  
f ~ Y  I,:~(x) dx > ~ f~Cr - C-~ 2~y > e2Y 1 - ~y~ . 

- -  ~ e - 4 Y  ~ 2  e - 4 Y  - -  2C?. 

f ~  ax ~ - ~ -  + (~'~-~-~ 1+  ---~ 

the last expression, since Y > A > 4C2, is no less than 

1 _ !~_L 
e4C~ ~16c~ > 2 4C~ 2 _ ~ e  >0 .  

Isr. J. Math. 

(4.12) 
2"-iF(u) [ < c l x  2-- 

K ~ ( x )  x--; I - 

uniformly for all x C (0, ½) and u C (v0, ½). Let b. = 2~-IF(u). The function 

1 

(4.13) h(v) = 1 - ~-~ 

is positive and continuous on [Vo, ½], hence its minimum on this interval is posi- 

tive. We now fix the value of a: 

(4.14) a = 
min~e[~o,½] h(v) 

Equation (4.12) yields 

Next we consider the case of small Y, 0 < Y < a/2,  where the the value of a 

is fixed below. Equation (4.7) and the comment following it imply that  there is 

a constant C1 such that 



Vol. 127, 2002 I N F I N I T E  I N D E X  " C O N G R U E N C E "  S U B G R O U P S  179 

therefore we have 

fl y K (x) 
x 

52 
- - d x  _> 2v-~ Y-2~(1 - 2---~ ) 1  _ 562y4_2v" 

Similarly we obtain 

f22 f22 a x  2v ld:r' 2f22 a 
a g 2(x) dx - b 2 - - <_ C x3-2Vdx, 
y X y y 

and therefore we have 

f22 aY K ~ x )  dx <_ 2--~ b2 y-2v2 2----5- + C2a4-2v3 

On the other hand, for v e (vo, ½) we have, using property (2) (following (4.9)), 

K 2 (x )dx  <_ - dx : C a. 
x x 

Hence we obtain 

f ~Y  K2~(x~)dx ~2~Y-:~ ~22v2v22~ ~ - l~j - -  5C2y4-2vl 

2v2 2v ~ 3 ~ a 

Now since 2Y is less than a the latter expression is no less than 

2 2v by(2 - 1 ) -  lOv22vC2a 4 
> O, b 2 + C2a 4 -t- Ca a2" 

which is positive due to our choice of a in (4.14). 

Finally we consider the case of Y E [9, A]. Let R(v,  Y)  be the following 

function: 

f;7  dx 
It is a positive, continuous function of v and Y, therefore the minimum it achieves 

on a compact set v C [v0, ½], Y E [~, A] is positive. This observation completes 

the proof of Claim 4.1. | 

COLLAR LEMMA FOR FLARE. As detailed in Section 3, flare can be viewed as 

a surface [P0, ~ )  × [0, n) with Riemannian metric 

ds 2 = dp 2 + cosh: pdt2; 
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the Riemannian  measure  is easily seen to be 

(4.15) d# = cosh p dp dt. 

Since the Laplacian in coordinates  

ds 2 = ed~ 2 + 2 f d~ d~ + gd~ 2 

is given by the formula (cf. (64) on p. 225 of [4]) 

_ 1  ( o O 

we obta in  the following expression for the Laplacian in our coordinates:  

02 F 1 02 F sinh p OF 
(4.16) a F - - - + - - - - +  

Op 2 cosh 2 p Ot 2 cosh p Op 

Let F again  be an L 2 au tomorph ic  form with  eigenvalue A = s(1 - s). In  this 

subsection we will prove the following 

1 LEMMA 4.2 (Collar L e m m a  for Flare):  For any Po C (0, oc), ~ < so < s < 1 

there is a constant c8o (independent of po) such that we have 

fifo +In 2 o fo IF(z)l 2dl~ 
~oC~+ln2 f :  [F(z)12d # ~ Cs ~ Cso > O. 

In the flare we have 

( a + A ) F = O ,  f ( e ' z ) = F ( z ) .  

Separa t ing  variables we obta in  

F (z )  = f(p)g(t), g(t + ,~) = g(t). 

Expand ing  g in a Fourier series yields 

F(z) = Z :.(P) 

Let ~ = 2rin/n.  Using (4.16) we obta in  the following ordinary differential equa- 

t ion for f~(p):  

s i n h p . , ,  , ( l__~ ( 27rin , 2 ) 
(4.17) f~'(p) + c~shp,t~(p) + s(1 - s) + fn = O. cosh 2 p k ~ ] 
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In t roducing the subs t i tu t ion  

(4.18) y = t a n h p  = cos¢  

we obta in  the equivalent ODE: 

(1 - y21 d2fn - dfn + (s(1--s)  
dy~ Y-J~y ~ 1 -  y2 + (~)2j 

£ O. 

Let us make another  subs t i tu t ion  

= - y ) , v n =  s v ~ - ¢ v . .  (4.19) f~ (1 2 -1 

The  differential equat ion for vn takes the form 

2. d2vn dvn 1 1 A) l _ _ ~ ) v , ~  = 0. (1 - ~ ) ~ - y ~  - 2y-~-y + ( - ~  + (~)2 _ (~  ~ -  

Now we recognize it as a Legendre differential equat ion 

d2v 
- 2X~x x + (u(u+ 1) - #2(1 - x 2 ) - l ) v  = 0 (4.20) (1 - x2) d-~x 2 

wi th  the following values of u and #: 

1 
(4.21) # = ~ - s, 

1 2rrin 
(4.22) "~ = - 2  + - - n  

The  variable x in our case is real and lies in (0, 1). This  equat ion has two 

linearly independent  solutions, called associated Legendre functions of  the  first 

and second kind and denoted by Pff(x) and Q~(x) [36]. The  behavior  of these 

functions a t  the singular  point  1, expressed in te rms  of the leading t e rm  of their  

a sympto t i c  expansions,  is as follows: 

P2(x) ,.~ 2"/2( 1 - x)- . /2  
r ( 1  - #)  ' 

Q~,,(x) ~ 2"/2F(#)  cos(~r#)(1 - x) -t'/2 if ~ ( # )  > O, 

Q~(x) ~ r ( - ~ ) r ( ,  +_~+ 1)(1 - x) ~/2 if N(#) < O. 
21+tt/2r(v, # + 1) 

1 Since in our case # = ~ - s < 0, F(z) lying in L 2 forces us to choose the decaying 

solution P~(x). 
Thus  finally we obta in  for fn 

fn (Y) = (1 - y2) ¼ p ~  (y) = v/sin Cp~ (cos ¢), 
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where # and v are as in (4.21) and (4.22). Returning to the variable p we have 

1 
]~(p) = ~ P ~ ( t a n h p ) .  

By the Parseval identi ty we get 

]F(z)12dp = E [c'12 (P~-;+n (tanhp))2aO" 
0 n a PO 2 

The  collar lemma for flare would thus follow from the following 

For any Po E (O, oc), ½ < So < s < 1 we have (with C8o = 1 - 

1 

(4.23) _> c8 >_ C8o > 0. 

The  proof  of Lemma 4.3 in turn  hinges on the following claim: 

CLAIM 4.2: For  any p > 0 

!_8 1 oo am(n) 
(4.24) (P-2½+n(tanhp))2 - (coshp)28-1 E (cosh p)2m' 

m=o 

where am(n) > O. 

Proof: For ~ ( # + v )  < 0, ~ ( v - # )  > - 1  and 0 < x < 1 (the case we are 

in) we have the following remarkable expression for the product  of two Legendre 

functions, involving our old friends I~ and K~ ([28], p. 191; [10], p. 667): 

c¢ 1 
2 fo  - x2)½))2K2 +l(t)dt 

(P2(x))2 = F(v  + 1 - # ) F ( - v  - #) 

1 In our case with # = ½ - s, v = - 3  + fi, and x = tanh  p this yields 

(4.25) (P_2!~+g ( tanh p))2 = 

2( r (8  -Jr- n)F(8 - ~) ) -1  fo (I8-½ t 2 

Now f o r / ~  (x) we have 

I~(x) = k!r(v + k + 1)" 
k=0 

LEMMA 4.3: 
1 2so - - I  ) 
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{x~2v+2m in the product of two convergent series Computing the coefficient of x~j 
(cf. [31]) 

o~ ( ~ ) ~ + = k  o~ ~ + 2 ~  

E E k ! F ( v + k + l )  x k=o _ j ! r ~  + j + 1) 

we obtain the following expression for I~(x): 

(4.26) (2 )2v  ..~o x2mF(2v+2m+l)  
I~(x) = = 2 2 ~ m ! r ( 2 v  + m + 1 ) ( r (v  + m + 1))2" 

On the other hand, using the integral representation for K~(x) when N(p) > 
_ !  

2 

x ~ f loo 
,~ (~)  ~-x~(t  ~ ,, K , ( x ) -  P--(--(--~-) - 1) -~dt 

and the Beta function integral, we obtain for a > -1 ,  N(a + 1 + v) > 0 

(427)'-.--" ta- - - t - - t  -~-1- l + a + v  l + a - u  
2 F 2 " 

We now expand (I , (  t ~2 using (4.26), and substitute it in (4.25) to s -~  \2coshp]] 
obtain 

fo (, - 

(cosh p) 2~-~ ~ (coshp12"~m!42mr(2s + m l ( r ( s  + m + 
r n = O  

1 ~ bm(n) 
-- (coshp)2S-1 E (coshp)2rn' 

m = O  

where 
F(2s + 2m) oo 2m+2s+l f o t  g2~(t)dt 

bin(n) = 42m+2S_,m!r(2s + m)(r(s + m + ½)F" 

Using (4.27) we have 

f0  ° = + s + n ) r ( m  + s - ~). t2m+2S+ l K2f~(t)dt 22m+2s-2F( m 

So finally we obtain 

(4.28) }-s 1 oo am(n) (P ~ - ( t a n h p ) ) 2 -  E 
- ~ - n  (cosh p)2,-1 (coshp)2m' 

rnmO 
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where 

r (2 ,  + 2m)r(.~ + ~ + ~)r(m + ,  - ~) 
(4.29) am(n) = 22m+2,_1m!F( s + f i ) r ( s  - ~ ) r ( 2 s  + m)(P(s + m + ½))2" 

This proves 11 Claim 4.2. 

Returning now to the proof  of Lemma 4.3 we have, using (4.28), 

PO+ln2 / 1 s \ 2  o [ P ~ ; + a ( t a n h  p))  dp /.po+'n 2 de oo ~=(.) 
JPo (coshp) 2*-1 E m = O  (coshp) 2m 

c~ ½-s 
f;o+ln2(P2_~+n(tanhp))2dp f;oOO+ln 2 dp oo a m ( n )  (¢o,hp)2.-' ~m=0 

co ~Po +In 2 dp 
E ~ = o  am(n) ~.o (~o.~.)~.-+2.-, 

(cosh p) 2m+2"- I 

b _ Em=o an(-) ~(Po,*) 
- -  o o  Z~=oam(n)em(po,.) 

with fpo+'n2 dp ~ dp 
bm(Po, s) ( c o s h  p)2m+2s--1  - - - . o  (coshp)2m+28_i and cm(po, s) = o+ln2 

Now cosh p > ½e p and for p >_ Po > 0 we have 

coshp  < 1(1 + e-2p°)e p < e °. 

Hence we have ipo+ln 2 2 - ( 2 m + 2 8 - I )  1 
bm(Po, s) >_ e-p(2m+28-1)dp = ~ po 2m + 2s - 1 e--P°(2m+2s--1)' 

and similarly for em(Po, s) we obtain 

~pp ~ dp __ 1 e _ p o ( 2 m + 2 s _ l )  
cm(Po, s) < ( !pp~2m+2s-1 2m + 2s - 1 " 

o+ln2 ~2 - / 

Therefore we have 

cm(po, s) >-1 -  > 1 -  >_1- >0. 

11 One can give a shorter proof using the following expansion, valid for 0 < x < 1: 

F ( l _ # ) p ~ ( x ) = 2 ~ ( l _ x 2 ) _ ½ ~ F ( l + l v  1 1 1 ) - ~ # , - ~ u - 7 # ; 1 - # ; 1 - x  2 . 

We felt, however, that the longer road was sufficiently more scenic to justify 
taking it. 
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Consequently we obtain 

f f :+ ln  2 -l--s (P2½+a(tanhp))2dp 
(x~ / 1 s \ 2  

flo+ln2 ~P-~;+a (tanhp)) dp 

I ~ l  2So-I 
___1- > 0 ,  

concluding the proof. | 

5. Further analytic preparations 

COMPUTATION OF CONVOLUTION. A continuous compactly supported function 

k(z, w) on H × H is called a point pair invariant if 

k(gz, gw) = k(z,w) Vg C SL2(R). 

Such a function depends only on hyperbolic distance, consequently we can set 

k(z, ~) = k(~(z, ~)) 

where k(u) is a function in one variable u >_ 0 and u is given by equation (3.4). 

Given a geometrically finite Fuchsian group F we define an automorphic kernel 

(5.1) K(z, w) = E k(z,'yw). 
"y6F 

Given two pont-pair invariants kl, k2 we define their convolution product kl * k2 

as follows: 

(5.2) kl * k2(z, w) -- fH kl(z, x)k2(x, w) d#(x). 

Let us now consider the following point-pair invariant: 

1 if u(z,w) <_ ( Z -  2)/4, 
(5.3) kl(Z'W) = 0 if u(z,w) > ( X - 2 ) / 4 .  

The corresponding automorphic kernel counts the number of lattice points in 
hyperbolic circle problem: 

g l ( z ,  w)  = E k l (Z '  ~yw) = #{')' e r :  4u(z, ~/w) + 2 <_ X}. 
"yEP 

In particular, by taking z = w = i and using (3.7) we have 

p l ( x , r )  =#{~ ~ r :  4u(i,~/i) + 2  _ X} 

= # { ( a  c bd) E F:a2+b2+c2+d2<X}  

=#{~ e r :  II~ll 2 < x } .  
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Let us now compute  the convolution k = ki * ki (cf. Sarnak and Xue [39]). I t  

will be more convenient to work in D.  We have 

k(z, w) = fD kl(z, x)kl(x, w) dg(x). 

In terms of hyperbolic distance p 

1 i f p ( z , w )  <_ T, 
kl(z,w) = 0 if p(z,w) > T, 

where e T + e - T  = X o r  c o s h  T = X/2. 

p(~, ~ )=T 

Figure 7. The case p(z, w) = s < T 

Now we observe tha t  

k(z, w) = h-area [B(z, T) n B(w, T)], 

where B(z, T) is a hyperbolic disc with center z and hyperbolic radius T. Let 

E = B(z, T) N B(w, T). I t  is clear tha t  k(z, w) = 0 if p(z, w) > 2T. Suppose 
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p(z, w) < 2T. Wi thou t  loss of generality we can assume tha t  z = 0. The set 

of points ~ satisfying p(0, ~) = T is a Euclidean circle at 0 with center at 0 and 

radius R, where 
R 

s inh(T/2)  = lx~_Z_~_R2 , 

or equivalently 

t anh (T /2 )  = R .  

If  p(z,w) = s, w has Euclidean coordinates ( t anh(s /2 ) ,0 ) .  The set of points 

p(w, ~) = T is a Euclidean circle with center (ao, 0) and radius Ro, where (with 

d = t anh(s /2 ) )  

1 --  R 2 1 - d 2 

ao=d-. l_R2d 2 and R o - - R  1 R2 d--2 " 

Using hyperbolic cosine law (3.12) we obtain 

cosh T = cosh s cosh T - sinh s sinh T cos a ,  
cosh s cosh T - cosh T 

COS OL 
sinh s sinh T 

_ coshT(cosh  s - 1) _ t anh(s /2 )  

sinh s sinh T t anh  T 

Let v = (s/2, 0) and suppose c lies on the arc ATB (see Figure 7). The angle 

¢ = CZV < a. Let r (¢)  = p(z, C); we have 

cosh r (¢)  = cosh(s/2)  cosh T - s inh(s/2)  sinh T cos ¢ 

< cosh(s/2)  cosh T - s inh(s/2)  sinh T cos a 

t anh( s /2 )  
= cosh(s/2) coshT-s inh(s /2)s inhT(  ~ ) 

cosh T 

cosh(s/2) 

Similarly, if D E AFB, the left arc, we get the same est imate by considering the 

triangle Dvw to obtain 

coshp(v,D) < 
c o s h T  

cosh(s /2)"  

Thus E C B(v, r) with 
c o s h T  

c o s h r -  
cosh ( s /2 ) '  
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a hyperbolic disc whose area, by (3.10), is 

/ c o s h T  
4~r sinh 2 ( r /2)  = 2~r (cosh r - 1) -- 2~r 

cos-~(8/2) 

Thus we have proved the following 

PROPOSITION 5.1: For k defined as above we have 

1) << 27re T-s~2. 

(5.4) k(z,w) << e T-s~2 if p(z,w) <_ 2T, 

and is 0 for p(z, w) > 2T. 

PRETRACE INEQUALITY. Now we recall the following crucial fact about  point-  

pair  invariants. 

THEOREM (Selberg): Suppose that ¢ is an eigenfunction of  the Laplacian with 
A¢ _-- A¢. Then ¢ is also an eigenfunction of the integral operator corresponding 
to any point-pair invariant, and its eigenvalue in the la t ter  context depends only 

on A, and not on ¢; that is there exists a function h, called spherical function, or 
Selberg/Harish-Chandra transform, defined on the set of all eigenvalues (which 
in our case is C), such that 

(5.5) fH k(x, y)¢(y)dy = h(A)¢(x).  

The  Selberg/Har ish-Chandra  t ransform is computed in the following three 

steps: 

q(~) = k(u)(~ - v)-½ d~, 

g(r) = 2q(sinh(r/2)2), 

h(t) = ]_~ eirt g(r) dr. 

In our case of kl = X[o,(x-2)/4) such computa t ion  yields (see, for example, 

[14]) 

r - F ( s  - 1/2) . ~  
(5.6) h i (s )  = v ~  K(~-+-~ ~" + 0 ( X 1 / 2 )  for 1/2 < 8 < 1, 

where A = s(s - 1). 

Given two point-pair  invariants, their  convolution product  kl * k2 was defined 

in (5.2) as 
g *  

kl * k2(z, w) = [ kl(z, x)k2(x, w) d#(x). 
JH 
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For the automorphic kernel we have 

(5.7) K(z ,w)  = f K l ( z , x )g2(x ,w)  d#(x); 
J r  \H 

and the Selberg/Harish-Chandra transform of kl * k2 is hl(A)h2(A). 

In particular, if we take k2 -- kl we obtain 

(5.8) /H kl * k--l(X, y)~)(y)d#(y) = Ihl(A)[2¢(x). 

We are now ready to prove the following proposition. 

PROPOSITION 5.2 (Pretrace Inequality): Suppose F is a geometrically finite 
~chsian group. Let k = k~ * k~ as above and K(z,  w) = ~ e r  k(z, 7w). Let 
Ao, A1,. ., Aj be the discrete eigenvalues below 1. • ~, ¢ 0 , ¢ 1 , . . . , ¢ j  be the corre- 

sponding eigenfunctions. Then 

g(z,z) > Z Jh1( ')12L¢ (z)l 2 
Ai<I/4 

Proof." As was shown by Lax and Phillips in [21], the spectrum of the Laplace 

operator on F = F\H in [0, I/4) consists of a finite number of eigenvalues. 

(This follows from the energy form being positive definite on a subspace of finite 

codimension.) Let 

VI=L2d(F)= + ¢,(z) and V2 = L2 ( F )  eV1. 
Xi<l/4 

Consider a direct sum decomposition 

L2(F) = V1 @ V2 = L2d(F) @ L2c(F). 

The operator K: L2(F) -+ L2(F) is nonnegative, i.e., 

<KI, f)  > 0 '¢f 6 L2(F). 

Its projection onto V2 is an integral operator Pv2K with a kernel 

B(z,w) = K ( z , w ) -  ~ h(Aj)¢j(z)¢j(w). 

The operator B = Pv~ K is a product of two nonnegative commuting selfadjoint 

operators; by the standard theorem in functional analysis (see, for example, [27, 

page 318]) it is also nonnegative, <B f, f> > O. 
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Taking now the sequence of functions (for z fixed) 

1 i fd(z ,w) < 1/n, 
f ~ ( w ) =  0 i f d ( z , w ) > l / n ,  

we have 

B(z, z) = l i m ( B f n ,  f~) > 0, 

proving the desired result. | 

Isr. J. Math. 

ESTIMATE ON THE NUMBER OF LATTICE POINTS. In this subsection, following 

the method of Sarnak and Xue ([39], Theorem 3.1) we will prove the following 

estimate on the number of lattice points of F(p). 

PROPOSITION 5.3: Let F(p) be a principal congruence subgroup of SL2(Z). Then 

T2+e Tl+e 
(5.9) Ni(T,r(p))% f }~, 1 << ~ + - - f  + 1. 

~Er(p) 
H-ylI_(T 

The implied constant is independent of p. 

Proof: We have to estimate the number of integers a, b, c, d satisfying the fol- 

lowing conditions: 

(5.10) [ah Ibh Ic[, Idl < T, 
(5.11) ad - bc = 1, 

(5.12) a ~ d = l  (modp),  

(5.13) b = c - 0  (modp).  

There are O~(T-~) + 1 choices of a satisfying (5.10) and (5.12). We now 

observe that 

(5.14) a + d = 2 (rood p2). 

Indeed, rewriting the conditions (5.12) and (5.13) in the form 

a = A l p + l ,  b = A3p, d = A 2 p +  1, c = ~ 4 p  , 

and substituting them in (5.11), we obtain 

( A l p + I ) ( A 2 p + I )  - A3PA4P = 1. 
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Opening parentheses and rearranging the terms we easily have 

(A1 --k A2)p = (A3A4 - AIA2)p 2, 

S O A l + A 2 - O  (modp) and 

a + d = 2 + (A~ + A2)p = 2 + (AaA4- A1A2)p 2, 

proving (5.14). 
T~+~ There are O ~ ( - ~ )  choices of a, d satisfying (5.14) and (5.10). For each satis- 

fying choice of a, d let ~ = ad - 1. From (5.10), 1~1 < T2, so for each choice of 

a, d as above the number of b, c, satisfying bc = ( is at most O¢(T2~). Hence 

TI+~(T 1+~ ) Nl(r,r(p)) <<~ - 7 -  p + 1 + 1 

T2+e Tl+e 
<<~ ~ - -  + - ~  + 1, 

which proves the proposition. | 

6. P r o o f  o f  t h e  M a i n  T h e o r e m  

Utilizing the results obtained in the previous sections we will now prove the 

main theorem. As we have shown in section 2 for p large enough, we have 

h(1)/A(p) ~ SL2(Fp). Now suppose that 

ft($-(p)) N (8(1 - 8), 5/36) ¢ ft($-(1)) A (5(1 - 8), 5/36), 

i.e., that  there is a new discrete eigenva|ue A. Let V~ be the corresponding 

eigenspace. The Laplacian on 9C(p) commutes with the deck transformations and 

consequently SL2(Fp) acts on V~. Since by assumption this action is nontrivial, 

V~ must contain a nontrivial irreducible representaion of SL2(Fp). A result going 

back to Frobenius asserts that  any nontrivial irreducible representaion of SL2 (Fp) 

has dimension at least ~ - ,  thus we conclude that 

(6.1) m(A, ~'(p)) _> ( p -  1)/2, 

where re(A, ~(p)) is a multiplicity of a new eigenvalue A. 

To bound the multiplicity from above we evaluate the automorphic kernel 

Kx(z, w) corresponding to point-pair invariant k -- kl */¢1 (with kl defined by 
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equation (5.3)) on K:p, the compact part  of .TZ(p), as defined in equation (3.15): 

~p K(z, z)d#(z) = E ~ ,  k(z,'Tz)d#(z) 
,y~h(p) 

= E E fie k(~-lz'~-l"yz)dlt(z) 
"Y£h(v) 56A(1)/A(p) ' 

-y~h(p) -y6r(p) 

where in the last line, not being in the position to exploit the sparsity of the set 

of lattice points of A(p), we simply recorded the observation that  A(p) C F(p). 

As we will see below, this is a sacrifice we can get away with. 

Now recall that  for z = i we have 

K1,x(i,i)= E kl,x(i, Ti) 
~er(v) 

= , { ( a c  : )  6F(P):a2+b2+c2+d2<-X:2} " 

For z # i we have 

C --  ' 

where fz is a homogeneous positive-definite quadratic form in a, b, c, d, continu- 

ously depending on z. Since t : l  is compact,  there is a constant a (independent 

of p, X, z) such that  

°'- 1 < fz(a,b,c,d) < a 
- a 2 + b 2 + c 2 + d 2 - 

and therefore 

Kl,x/,,(i,i) <_ Kl,x(z,z) < Kl,,x(i,i), 

and a similar inequality holds for the convolved kernel K = K1 * K1. 

Using the estimate on the number of lattice points given in Proposition 5.3 and 

the estimate for convolved point-pair invariant k recorded in Proposition 5.1, we 

obtain 

( 6 . ~ )  JCp K(z'z)d~t(z) <<p3 ~x2+ek p3 ~-xl+e) 

for arbi trary e > 0. 
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On the other hand, using pretrace inequality (Proposition 5.2) and recalling 
that the Selberg's transform of ki is given by equation (5.6), we have 

£pK(z, zla.tz) > f x2"--t¢.tz)12d.tz) 

Interchanging the order of summation and applying the collar lemma for cusp 
(Lemma 4.1) to each of the contiguous cusps and collars in ~-(p) (see discussion 
in section 3 leading to (3.16)) and the collar lemma for flare (Lemma 4.2) to each 
of the contiguous cusps and collars in ~-(p), we obtain 

,x i,p < ¼ ~ ,x~,~ < ¼ 

Aj,p<¼ 

So we have 

for any ~ > 0. 
Rewriting it as 

X2+e + X i+e) 
E X2Si'"m(Aj,P) << p3 

)~j,p < l 

m(A,p) << X 2(1-s) +p3X1-2~, 

and taking X of order p3 we obtain 

m(A,p) << p~O-s). 

Combining this with the lower bound (6.1), we get that for p large enough 

5 5 
6 ( 1 - 8 )  > 1 ¢ , 8 <  

Hence we have proved the following 

MAIN THEOREM: Let A = (A i , . . . ,Ak )  be a tinitely generated subgroup of 
SL2(Z) with 6 > 5. Let ~'(p) = A(p)\H. For p large enough 

f2(.T(p)) N [6(1-6) ,  ~ 6 ) =  ~(.T'(l))n [6(1-5) ,  5 ) .  

5 Then ~(~'(p)) has a spectral gap, that MAIN COROLLARY: Suppose that rJ > g. 

is t'or p large 

AI(Sc(p)) >_ min (AI(~'(1)), 5 )  • 
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7. Lubotzky~s  p r o b l e m  

In this section we address Lubotzky's problem described at the end of the 
introduction. 

First, we translate the main corollary into representation theoretic language. 

By the Duality Theorem [9], ~r8 E G (where G -- SL2(R)) in the spherical 

complimentary series representation of SL2 (R) appears as a subrepresentation 
of L2(F\G) iff A(s) • ~ ( F \ G / K )  = f~(r \H).  Here A(s) = 1/4 - s 2, s(A) -- 

v/l-/4 - A 2. Hence we can restate the corollary as follows: 

THEOREM 2: Notation being as above, let 

Ao -- Ao(A(1)\H), so = S(Ao); 
/~1 : min(Al(A(1)\H), 5/36), sl = 8 ( ) ~ l ) .  

For p large enough no complimentary series representation ~rs with s • (sl, So) 

occurs as a subrepresentat ion of L 2 ( h (p ) \ SL2(R)). 

Let us write 

L2(A(p)\ SL2(R)) = L2(A(p)\ SL2(R)) ( ~  V~ o, 

where Vso is invariant subspace corresponding to representation ~rSo; it occurs 
with multiplicity one by the Patterson theorem (quoted in the Introduction) and 

Duality Theorem. Another way of stating Theorem 2 is the following. 

THEOREM 2': Let R be the following subset of SL2(R): 

(7.1) R = U L~(A(p)\ SL2(R)). 
p 

Then r~ o is isolated with respect to R, i.e., ~r~ o ~ R. 

Recalling that we have shown in section 2 that for p large enough we have 

A(1)/A(p) TM SL2(Fp), let us turn to the family of Cayley graphs 

Gp -- G(SL2(Fp), {A1, . . . ,  Ak}). 

Remark 7.1: We are ignoring a finite set of primes p which are not large enough 

to satisfy the conditions of (2.9). But a finite set of graphs trivially forms a 

(finite) family of expanders. 

The passage from Theorem 2 t to the expansion property of graphs gp is a 

straightforward application of Fell's continuity of induction; we give the details 

below. 
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Let H(p) = L2(A(1)/A(p)) = L2(SL2(Fp)) be the vector space of functions on 

a finite set Vp = SL2(Fp) with the norm [Ifll 2 = Y~cy~ If(x)l 2" Let 

H o ( p ) =  { f E H(p) , ~ f(x)  = O}. 
XE Vp 

Then A(1) acts on H(p) by 

("/f)(x) = f(x~/), 

and H(p) = Ho(p) • Cxv as A(1)-module. 

The action of A(1) on Vp is transitive, so the only A(1)-invariant functions on Vp 

are the constants Cxv.  Thus Ho(p) does not contain P0, the trivial representation 

of A(1). 

Now inducing to SL2 (R) we have (by the induction in stages theorem) 

i ISL2(R) T ISL2(R) v 1A(1) ~ .SL2(R) v ]SL2(R) 
noA(p) 1 = mOA(1) lnOA(p) 1 = lnoA(1) P0 ¢~ lnoA(1) Ho(p) .  

We have 
i ISL2(R) 
naA(1) Po ~- 7rso. 

Now let T be the subset of A(1) consisisting of representations Ho(p), T = 

~p Ho(p). Then Po is isolated with respect to T. Indeed, assume the contrary, 

i.e., that  there is a sequence of rj C T such that rj/'~ Po. Using Fell's continuity 

of induction [6] we would then have 

so that 

i iSLe(R) /~ I_.~SL2 (R) 
nOA(1) Tj / .nUA(1) P0 ~ 7rso 

T 1SL2(R) ( n A(1) P0) 7rso C m(1A(1) \ I -dA(p )  1 O C R, 

contradicting Theorem 21 . 

Recalling the definition of Fell's toplogy [6], this implies that there is e > 0, 

depending only on A(1) and S = {A1, . . . ,  Ak} but not onp,  such that Vf E Ho(p) 

II'Yf - fll > ~I]IIL for some 7 e S. 

Let A be a subset of V of size a and B its compliment of size b = n - a, where 

n = IYl. Let 

f ( x ) =  ~b' i f x c A ;  
- a ,  i f x  E B. t 
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Then f E H0 and 

while for every 7 E S 

where 
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[IfiI 2 = ab 2 + ba 2 -- nab 

II~ff - fl[ 2 = (b + a)21E.r(A, B)], 

E ~ ( A , B )  = {x  E V i x  E A and x0' E B or x E B and x')' E A}. 

To summarize, there exists 7 E S such that  

1  'Jl ll' 
IOAI >_ ~ I E T ( A , B ) [  . . . .  >- -2-# - ~ 2n = - ~ ( 1 -  [AI. 

Hence ~(SL2(Fp), S) are expanders with c _> c2/2. We have therefore proved the 

following theorem: 

THEOREM 3: Let  S = {A1, . . . ,  Ak}  be a s y m m e t r i c  set  o f  generators in SL2(Z) 

and let A = ( A 1 , . . . ,  Ak}.  I f  the Hausdorf f  dimension of  the l imit  set 5(L(A)) > 

5/6, then ~p = G(SL2(Fp), S) is a fami ly  o f  expanders. 

Now, as promised at the end of the introduction, we give examples of groups 

satisfying 5(L(A)) > 5. Let 

(°1 o) S =  1 , T =  0 1 ," S j  = TJ S T  - j .  

Let An = (S, $1 , . . . ,  S,) .  We claim that for n sufficiently large 5(L(A)) > 5, or 
5 equivalently that A0(A,,\H) < 5g" 

To this end, we recall that  by the variational characterisation of the bottom of 

the spectrum 

(7.1) A0= inf fJ=[Vu[2d# 
~CL2(~) fy= u2d# 

VuEL2(3 ~) 

The fundamental domain of A,  is an exterior of n + 1 circles Co, C1 , . . . ,  Cn (see 

Figure 8 for n = 3). 
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J 
0 2 4 6 

x 

Figure 8. Fundamenta l  domain  of  A3. 

Let us take the following test function u: 

un,A,~(x + iy) = f~(x)h¢,A(v),  

where 

and 

f~(x) = { 
0 for x _< --2, 
2 + x for --2 < x < --1, 
1 for --1 < x <_ 2n + 1, 
2 n + 2 - x  for 2n + l < x <_ 2n + 2, 

0 for x >_ 2n + 2; 

1 
h~,A(y) = 2 -  

0 

f o r 0 < y < e ,  
fo re  < y _ < A ,  
for A < y ___ 2A, 
for y > 2A; 

the constants  c and A are fixed below. Computa t ion  yields 

f~n IVUn'e'AI2d# 
UL,Ad. 

 (!41 (, 
<_ - + H A +  + n  + 

= (1 2 1 1 4 A 1 



198 A. GAMBURD Isr. J. Math. 

If  we take A = 9 and e = ~s, we obta in  tha t  for n greater  than  4392 we 
5 hence for these n the groups Am come under  the purview of have )~o(3~n) < 5~, 

T heo rem 3. 
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